CEV "Constellation" и лунная программа НАСА

Автор ratman, 23.09.2004 04:46:02

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

Зомби. Просто Зомби

Ну, пара тысяч километров - это еще далеко не "вся Луна вдоль и поперек"
=========

Некое промежуточное "резюме"

Можно, таким образом, выделить две принципиальные стратегии

Первая - на основе ЛОС, в принципе описана выше
Назовем ее условно "совецкой" ( ;) )

Вторая ближе к американской (хотя на самом деле я "не в курсе" конечно, и вообще ихний подход насколько можно судить еще не сформирован окончательно, так что эти названия вполне условны, только чтобы называть коротко)

Итак, "американка":

1) Глобальное исследование Луны осуществляется исключительно автоматическими средствами
2) Основой является "царь-ракета", обеспечивающая - как минимум! - прямую доставку не менее 20 тонн ПН на поверхность Луны
3) За время "Фазы-1" более или менее многочисленные "минибазы" уровня "избушки на курьих ножках" устраиваются в разных местах, обеспечивая более или менее обширный охват изучаемых районов

А вот "совецкая", повторим кратко основное:

1) Основная база для ДЗЛ - ЛОС
2) Включены интерактивные, реал-тайм управляемые роботы-манипуляторы для работ на поверхности
3) Включена реальная ("крутая", те-сезеть) замагнитосферная медико-биология на основе длительных экспедиций на ЛОС
4) Ограниченное число пилотируемых высадок "а-ля Аполлон" производится на предварительно отработанных автоматами площадках
5) Базовая ракета существенно меньше
6) Не только возможно, но и очень желательно, а на переходе к "Фазе-2" вообще обязательно широкое привлечение высокоимпульсных транспортов малой тяги для доставки грузовых ПН на ЛОС

Обе стратегии вполне логичны, у каждой есть свои плюсы и минимумы

Мне, ессессно, больше нравится "совецкая", поэтому, может быть, "американку" я описал не очень внятно, она для меня менее прозрачна
Кроме того, после Энергии "у нас" сделать сверхтяжелую ракету очень длительное вряд ли будет вообще возможно, возник психологический и политический "блок" на это дело
Так что "для нас" если и возможна вообще эта деятельность, "по Луне", то уж не по "американской парадигме" во всяком случае
Не копать!

Waldi

Раз у американцев нету "блока" на царь-ракету, то они ее сделают, тем более что по финансам и по имеющейся (шаттловской) оснастке проблем нет. А с прицелом на Марс - без нее уже и никак.
Ну а Советам остается совецкий вариант, за неимением РН Энергия и навороченых АМС.

Зомби. Просто Зомби

И то было бы здОрово - ибо пока "совецкий вариант" существует лишь как возможность, а по факту имеем лишь плавающего в фантазиях, обкурившегося лунного гелия Севастьянова и Перминова, для которого выше ГСО "интересы не распространяются"
Там, видимо, ничего вообще нет, никакой Луны-Марса-Плутона, а расположен уже непосредственно трансфизический мир :roll:
 :mrgreen:  :twisted:  :mrgreen:
 :twisted:  :mrgreen:  :twisted:  
 :mrgreen:  :twisted:  :mrgreen:
Не копать!

Agent

President George W. Bush's 2007 request, which is due to be sent to Congress and released to the public Feb. 6, includes $16.792 billion for NASA.

 Congress last year approved $16.6 billion for NASA for 2006, a sum that included $350 million in hurricane-recovery money and also a 1.28-percent rescission. Not counting that money, which NASA needs to repair its Gulf Coast facilities damaged last year by hurricanes Katrina and Rita, the White House request would represent a 3-percent increase over the 2006 level.

Within the NASA request, roughly $6.2 billion would go to the international space station and space shuttle programs, about $3.9 billion would go toward the development of new human and unmanned spacecraft needed to replace the shuttle and send astronauts to the Moon, about $5.3 billion would go to space and Earth science missions, and about $720 million would go to aeronautics research.

NASA has yet to release its 2006 operating plan, so it is not yet publicly known how much the agency intends to spend on each of its majors programs. Based on last year's request, however, NASA's Exploration Systems Mission Directorate, which is developing the hardware NASA needs for its return to the Moon, appears to be in line for the biggest increase. The $3.9 billion NASA is requesting for those efforts for 2007 is roughly $700 million more than it planned to spend this year.

The Space Operations Mission Directorate's budget, which pays for the space shuttle and space station programs, would decline slightly under the 2007 plan, while NASA's Science Mission Directorate would see only a modest 1-percent increase.

Aeronautics spending would be held essentially flat.

Sevlagor

Вопрос на засыпку.
На какой орбите будет ЛОС?

Я вот уже наверно лет 5-10 думаю никак не придумаю. :mrgreen:

Зомби. Просто Зомби

ЦитироватьВопрос на засыпку.
На какой орбите будет ЛОС?

Я вот уже наверно лет 5-10 думаю никак не придумаю. :mrgreen:
На околополярной
Видимо, достаточно "низкой", 200-300 км
Не копать!

Ber

"Too much of anything is bad, but too much good whiskey is barely enough."  Mark Twain (C)

Waldi

Есть мнение, что низкие окололунные орбиты неустойчивы. А зачем так низко?

AlexB14

ЦитироватьМожно, таким образом, выделить две принципиальные стратегии
Итак, "американка":
2) Основой является "царь-ракета", обеспечивающая - как минимум! - прямую доставку не менее 20 тонн ПН на поверхность Луны
А вот "совецкая", повторим кратко основное:
1) Основная база для ДЗЛ - ЛОС
4) Ограниченное число пилотируемых высадок "а-ля Аполлон"
По первой стратегии надо "царь-ракету" на 11+2х2=15км/сек.
По второй стратегии надо РН на 11 км/сек и некоторое число полётов лэндера с 4км/сек. Но придётся строить ЛОС.
Предлагаю третью стратегию. Делим трассу пополам. Половину трассы преодолеваем челноком с Земли, а половину - лэндером Луны. Итак 15км/сек / 2 = 8км/сек + 7км/сек. 8км/сек - это АКСом до МКС. 7км/сек - это лэндером лунного базирования с РД-0410. Летает тоже до МКС и обратно. Недостаток стратегии - фактическое отсутствие РД-0410 (АКС может пока заменить Клипер). Но так как добывать гелий в приличных масштабах надо будет лет через 30, то за это время можно любой двигатель что восстановить, что заново создать. 8)
Errare humanum est

Зомби. Просто Зомби

Клипер не заменяет АКС ни в самой малой степени
Лэдерочелнок на базе РД-410 просто невозможен
Не копать!

Rarog

ЦитироватьПредлагаю третью стратегию. Делим трассу пополам. Половину трассы преодолеваем челноком с Земли, а половину - лэндером Луны. Итак 15км/сек / 2 = 8км/сек + 7км/сек. 8км/сек - это АКСом до МКС. 7км/сек - это лэндером лунного базирования с РД-0410. Летает тоже до МКС и обратно.

А рабочее тело для РД-0410 что будет, реголит? :D
Тогда уж и гелий-3 из него выпаривать, пока до МКС летишь. :lol:
...ползал в подлеске со вставными челюстями из апельсиновых корок и изображал врага вообще.

Андрей Суворов

ЦитироватьЛэдерочелнок на базе РД-410 просто невозможен

Отнюдь. Не только возможен, но и выгоден - при наличии развитой системы добычи гелия-3. Попутно будет добываться столько водорода, что хватит и на лунную базу, и на заправку лендера.

Смотрите - тяга у РД-0410 - 3,6 тонны, а вес - вместе с теневой радиационной защитой - 2 тонны. Стартуя с Луны с тяговооружённостью 1,2, больше не нужно, атмосферы нет, можно сразу разворачиваться по тангажу, мы можем рассчитывать на стартовую массу в 18 тонн, из них всего 2 тонны придётся на РД-0410. Конечно, это больше, чем у взлётной ступени Аполлона, но при УИ 925 секунд на разгон до LLO нужно всего ничего 3 тонны

Зомби. Просто Зомби

Лэндерочелнок, как я понял, должен долететь не до ЛЛО, а до МКС, то есть стартовать с ЛЛО, и затормозить у колонки... у МКС, то есть
И везти пассажиров при этом, БО там, СЖО
Минуя радиационный пояс (те. "конструкция" явно "не фанерная" должна быть, чуть посильнее, чем у Армстронгова "Орла"

И потом еще обратно

ЦитироватьНе только возможен, но и выгоден - при наличии развитой системы добычи гелия-3.
Не, ну не про это речь
"При наличии" - это уже совсем другая история
Не копать!

Agent

НАСА собирается расширять Centennial Challenges Competitions
Призы от полумиллиона до 5

ЦитироватьExternal organizations and individuals are sought to provide input and comments on the proposed set of rules for multiple competitions (included as appendices to this RFC) including:

    * Appendix 1. The Fuel Depot Demonstration Challenge
    * Appendix 2. The Human Lunar All Terrain Vehicle Challenge
    * Appendix 3. The Low-Cost Space Pressure Suit Challenge
    * Appendix 4. The Lunar Night Power Source Challenge
    * Appendix 5. The Micro Reentry Vehicle Challenge
    * Appendix 6. The Station-Keeping Solar Sail Challenge
Потробнее по этим пунктам
http://www.spaceref.com/news/viewsr.html?pid=19549

X

NASA's detailed budget figures show that its planned spending on the CEV and related programs, collectively called Project Constellation - which the agency has proposed to increase to $3.1 billion in FY 2007, compared with $422 million in FY 2005 - will jump to nearly $7.7 billion in FT 2011, or nearly double the current funding level for the shuttle fleet, beginning the first year after the shuttle is scheduled to be retired.

"This budget affirms NASA's commitment to assuring the nation's continued human access to space," the budget document states. That commitment requires using Constellation to replace the shuttle, which by FY 2011 will be 30 years old.

The goal of the funding targets is bring the Constellation systems - including the CEV and the Crew Lifting Vehicle - online as close to FY 2010 as possible, so NASA will have the smallest gap possible between the end of the shuttle program and the beginning of Constellation.

"Operational availability for the CEV and CLV is targeted for no later than 2014 (and) NASA will strive to bring that date as close to 2010 as possible," the budget document states. "Following the initial capabilities, Constellation will develop crew and cargo capabilities for a lunar surface mission as early as 2018, but not later than 2020."

NASA's current plans

X

Toward that end, NASA has proposed spending about $3.1 billion on Constellation in FY 2007, and intends to request slightly more for FY 2008, about $3.6 billion for FY 2009, $4.1 billion for FY 2010, and $7.7 billion the following year.

A large chunk of that money is intended to go for the CEV. NASA has asked for $839 million for FY 2007, and according to its budget plans will ask for comparable amounts for two more years, but the request is expected to jump to $1.1 billion in FY 2009, and about $2 billion in FY 2010 and FY 2011.

Agent

Ронату, что это за цифры?
Я видел без пары копеек 4 гигабакса на CEV+CLV в 2007

ЗЫ: вышел финальный RFP CEV Phase2
Вот что порезали
#  The Cargo Delivery Vehicle (CDV) Option is removed from the final RFP.
# The cryogenic liquid oxygen and liquid methane (LOX/ Methane) requirement is removed from the final RFP (SOW 6.2.7).
И вот еще
 The Additional requirement for the use of the Androgynous Peripheral Assembly System (APAS).

X

CEV
CEV's Compared
Credit: © Mark Wade
 

The Space Shuttle was sold by NASA to America in the early 1970's as a low-cost, reusable spaceship that would replace all existing boosters and manned spacecraft. The Apollo capsule and Saturn launch vehicles were scrapped. Production of all other expendable boosters would be discontinued once the Shuttle was 'fully operational'. The myth of its lower cost was maintained in the face of mounting evidence to the contrary until the shuttle Challenger exploded on the way to orbit in 1986. In the post-mortem that followed, it was discovered that the shuttle was actually more expensive and very much more operationally constraining in delivering satellites to orbit than the expendable boosters it was supposed to replace. So the American government abandoned use of the Shuttle for satellite launches and allowed production of expendable launch vehicles to resume.

But the Shuttle was now the only American manned spacecraft, so a new mission was found for it. It was claimed it was now safe after billions of dollars of post-Challenger fixes. It was also claimed that only its unique design would allow NASA to assemble a space station. The space station project stretched out, until it was taking decades. The shuttle was getting old, and America had no lifeboat - a manned re-entry vehicle - that it could use to rescue crews from the space station if the balky shuttle was unavailable. On the other hand, NASA saw development of any other manned spacecraft as a threat to the very existence of the Shuttle. Various suggested supplemental projects suggested in the 1980's and 1990's were decisively squelched. The X-38 lifting body was to be developed as a Crew Rescue Vehicle, and perhaps as a Shuttle alternative. But the initially simple skunk-works approach to the program was overwhelmed by NASA gold-plating, and it finally was quietly killed off 'due to cost over-runs'. The X-33 single-stage-to-orbit was NASA's true vision for a shuttle successor, but after spending a huge sum NASA decided SSTO was actually not attainable using existing technology, and canceled that. Given that NASA's lead-time for developing new spacecraft had gone from a few years in the 1960's to a few decades by the 1990's, NASA decided it would be prudent to start the long definition process for the Orbital Space Plane, a shuttle successor that would be launched by an expendable launch vehicle.

Then in 2003 the space shuttle Columbia was lost during re-entry. The final shuttle myth - that it was safer than alternatives - was demolished. Flights of the shuttle would have to end by 2010, it was decided, and therefore a successor ready for flight before then.

Meanwhile President Bush had been convinced by the NASA administrator O'Keefe to back yet another in-the-future grandiose manned space exploration program. The Orbital Space Plane was renamed the Crew Exploration Vehicle. Now the requirements for the spacecraft would be extended by requiring it to be the manned return vehicle not just from earth orbit, but from the moon and Mars. In the original 2003-2004 concept a CEV program would have been developed in three phases, to support NASA's then-planned three spirals of space exploration development:

Spiral 1 systems would be available by 2014 at the latest. They would provide the hardware to replace the space shuttle in support of manned operations in low Earth orbit. NASA hoped this capability might be available as early as 2010, when the shuttle was schedule to be retired. Otherwise only the Russian Soyuz spacecraft would be available to support International Space Station operations between 2010 and the station's planned retirement in 2016. Spiral 1 systems would also allow renewed robotic exploration of the moon.
Spiral 2 systems would allow a human landing on the moon, followed by extended duration manned lunar exploration and robotic exploration of Mars in the period 2015-2020.
Spiral 3 systems would allow establishment of a near-permanent lunar base and continued robotic exploration of Mars. Lunar surface habitation and power systems would be developed, and the CEV would have to be capable of long-duration lunar-surface or lunar-orbit storage between crew rotations or expeditions.
In Phase 1 of the CEV program (different from Spiral 1 of the overall program!) two contractors would develop competing CEV designs and demonstrate these in unmanned flight tests in 2008. Design of the definitive manned CEV would at the same time be taken up to the Preliminary Design Review stage. A single prime contractor would be selected to continue with Phase 2 in late 2008. That contractor would develop, test, and deploy a man-rated CEV system capable of supporting Spiral 2 requirements by 2014 (and hopefully capable of supporting Spiral 3 requirements without further modification). After completion of phase 2 the contractor would provide sustaining engineering services and production capability to support additional flights and additional CEV spacecraft.

The CEV requirements included:


Support a minimum crew of four (NASA preferred six) from the Earth's surface through mission completion on the Earth's surface.
Mass less than 15 to 18 tonnes (the precise value to be determined in preliminary contract studies).
Abort capability during all phases of flight. Preferably such abort capability would be available continuously and independent of Launch Vehicle (LV) or Earth Departure Stage (EDS) flight control.
Integrate with the Constellation Launch Vehicle (LV) to achieve low earth orbit.
Integrate with the Earth Departure Stage (EDS) to achieve lunar orbit.
Integrate with the Lunar Surface Access Module (LSAM) to achieve lunar surface mission objectives. Preferably the CEV would be capable of transferring consumables to and from the EDS and the LSAM.
Maximum use of existing technology.
Open Systems Architecture and use of common hardware and software between equipment built for acceptance testing of the flight system and the ground support equipment used to process the vehicle at the launch site.
Simple interface between the CEV and Launch System to optimize integration.
Certification by test to the maximum extent possible.
On 4 September 2004, NASA announced selection of contractors for initial Crew Exploration Vehicle studies. The contracts were awarded for a six-month base period. A six-month option would be exercised on a case-by-case basis. The selected companies and the value of their contracts were:


Andrews Space Inc., Seattle -- Base: $2,999,988; Option: $2,999,941
Draper Labs, Cambridge, Mass. -- Base: $2,988,083; Option: $2,945,357
Lockheed Martin Corp., Denver -- Base: $2,999,742; Option: $2,999,920
Northrop Grumman Corp., El Segundo, Calif. -- Base: $2,958,753; Option: $2,999,473
Orbital Sciences Corp., Dulles, Va. -- Base: $2,998,952; Option: $2,994,259
Schafer, Chelmsford, Mass. -- Base: $2,999,179; Option: $2,997,804
The Boeing Co., Huntington Beach, Calif. -- Base: $2,998,203; Option: $2,998,346
t-Space, Menlo Park, Calif. -- Base: $2,999,732; Option: $2,939,357
Although each contractor conducted thousands of pages of rigorous trade studies against NASA's proposed requirements, they came to very different conclusions. However there were some common themes identified by more than one contractor:


The optimum CEV would have a mass of under 9 tonnes and a crew of four or less.
The lowest cost launch solution would be to use existing expendable launch vehicles (Atlas V and Delta IV) or derivative. This would allow launch of the CEV on earth-orbit missions by a single booster existing ELV. Three-booster versions of existing ELV's could orbit elements of lunar or Mars expeditions.
The most flexible and logical lunar exploration architecture was to assemble lunar expedition components at the L1 Earth-Moon Lagrangian point. This allowed unconstrained launch and landing schedules, and provided a permanent way station for not only lunar, but Martian exploration.
By the time the final CEV proposals were received, Mike Griffin had been appointed the new NASA Administrator. He saw that the CEV plan would realistically leave NASA with a half-decade gap between the retirement of the shuttle and the commencing of CEV flights. Griffin obtained White House backing to reject all of the contractor's proposals abandon the long, expensive, 'spiral' development process, and plunge ahead using existing technology and NASA's best judgment. On June 13, 2005, NASA announced the down-select of two contractors: Lockheed Martin and the team of Northrop Grumman and Boeing. However the selected contractors would only build a CEV to NASA's own design.

Phase 1 was now accelerated so that a single contractor would be selected without prototyping or flight-test in 2006, so that the spacecraft could be available by 2010 as a shuttle replacement. The crew requirement was increased to six, and CEV launch mass to 30 tonnes, meaning the CEV could only be launched atop a Shuttle-derived, NASA-operated launch vehicle. NASA's CEV configuration, as finally made public in late 2005, was called 'Apollo on steroids'. The CEV would be used initially to provide access to the International Space Station after the retirement of the Space Shuttle in 2010. Thereafter it would provide the earth return vehicle for missions to the moon (by 2020) or Mars (by 2030+?).

It looked like the errors of the original Apollo program would be repeated. A three-module spacecraft, as used successfully on Soyuz and Shenzhou, was rejected. Instead the sole crew habitat space would be the re-entry vehicle, which would be a 41% scaled up version of the Apollo command module. This would have over three times the internal volume and double the surface area of the Apollo capsule, but NASA claimed its mass could be limited to only 50% more than the Apollo design. Despite the increase in volume and mass, it would provide accommodation for only four to six crew (versus three to five in Apollo).

The service module was stubbier and lighter than the Apollo CSM, and powered by a liquid oxygen/methane engine. The same propellant combination would be used in the reaction control systems of both the command and service modules, the ascent stage of any later lunar lander, and the ascent stages of any Mars landers. The choice of this untried rocket propellant was driven by NASA plans to - maybe - generate methane from the Martian atmosphere on future manned expeditions. For NASA's lunar landing scenario, the CEV would be required to make only the Trans-Earth injection maneuver to bring the crew home. In the Apollo scenario, the CSM had to brake both the CSM and lunar module into lunar orbit, as well as make Trans-earth injection for the CSM.

The CEV would be launched into earth orbit by the Crew Launch Vehicle, a shuttle-derived two-stage rocket consisting of a single Shuttle RSRM solid booster as the first stage and a new second stage, 5.5 m in diameter, using Lox/LH2 propellants and powered by a single SSME.

By January 2006 NASA still had not released its revised baseline so that the prospective contractors could begin working on their final proposals for the down-select. The contradictions in NASA's homegrown design had become apparent even before the final specification could be released. Reportedly, the liquid oxygen/methane engines would be eliminated, replaced instead by toxic but proven storable propellant engines as used on Apollo and the Shuttle. The CEV's first flight had slipped to 2011 or 2012. NASA had lost one its main political supporters, Tom DeLay.


The selection of an Apollo-type configuration for the re-entry vehicle represented a step back sixty years. The original Apollo design, a NASA in-house concept, was inferior to contractor alternatives. The Soviets selected the Soyuz configuration (identical to the losing General Electric Apollo design) and had a configuration still in production fifty years later - and likely to continue to the middle of the 21st Century in the Chinese Shenzhou. Apollo, by comparison, remained in production only five years. In 2005, Northrop-Grumman again proposed a Soyuz-type design.

Other alternatives for Apollo were a variety of ballistic, lifting-body and winged configurations, any of which would have provided a fine basis for a manned spacecraft that could be recovered with horizontal landings. At least the excuse given in 1961 - that there was no time to pursue development of a winged vehicle and still make the end-of-the-decade lunar landing deadline - may have had some validity. But this made less sense in 2005, when Lockheed proposed a winged design based on forty years of intervening lifting body research and shuttle hypersonic flight experience.

Incredibly, NASA made the same mistake again, fifty years later. The same approach was used. First, proposals from industry were solicited. In both the Apollo and CEV cases these were imaginative, innovative, and incorporated all of the lessons of hundreds of millions of dollars of advanced research funded not just by NASA, but also by industry and the US Air Force. Superior contractor designs using the Soyuz-type separate orbital module or a winged spaceplane approach were made in both cases. In both cases the contractors were thanked, and NASA then proceeded with its own in-house government design. This was then suitably tweaked until it will passed the Congressional pork test.

After the Apollo decision, it was apparent that a two-man Apollo or Gemini direct lunar mission would have been much more logical, economical, and less risky. In the CEV decision, it was apparent that a design with a re-entry vehicle and service module under 8 tonnes that could be launched by an existing heavy-lift EELV rather than NASA's shuttle-derived hardware would be much more economical. But again the decision was made primarily on political grounds, and to keep NASA government jobs.

The following table compares NASA's CEV design and mission plan with those recommended by its subcontractors:


Contractor CEV Concept Crew RV Form Cargo LV Lunar Scenario
Andrews MM+CM+SM 6 Apollo ELV 40t L1
Boeing MM+CM+SM 4 Apollo ELV 20 + ELV 40t EOR/L1
Draper MIT Integral 6 Soyuz HLV 60t Direct
Lockheed MM+CM+SM 4 Lifting Body ELV 70t EOR + LOR Equatorial
Northrop-Grumman MM+CM+SM 4 Soyuz SDV 20t + ELV 55t EOR/L1
Orbital Integral 4 Apollo SDLV 141t LOR
Raytheon Integral 3 Apollo ELV 25t L1
SAIC Integral 4 Soyuz ELV 10 to 30t EOR + LOR Polar
Schafer Integral 4 Discoverer ELV 25t EOR/L1
Spacehab MM+CM+SM 4 Apollo ELV 15t EOR/LOR
t/Space Integral 4 Discoverer Quick Reach 5 t EOR/LOR/EOR
NASA Integral 6 Apollo SDLV 25t/SDLV 136t EOR + LOR Polar


--------------------------------------------------------------------------------

CEV

AlexB14

ЦитироватьЛэндерочелнок, как я понял, должен долететь не до ЛЛО, а до МКС, то есть стартовать с ЛЛО, и затормозить у колонки... у МКС, то есть
Не. Стартовать он должен с поверхности Луны. На МКСе сдаёт груз АКСу и назад - на заправку. На МКСе заправляется только пока колонку на Луне не сделали, имхо. 8)
Errare humanum est

Agent

Джефри Белл вылил очередную порцию творчества
http://www.spacedaily.com/reports/oped-06a.html