грунт c Марса

Автор ronatu, 24.11.2007 00:54:20

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

Vladimir

ЦитироватьНа Электро-Л отработают системы базовой платформы.
На Фобосе-грунте совершенно другой состав бортовых систем, так что пуском Электро-Л ни одна из проблем ФГ решена не будет

Старый

Цитировать
ЦитироватьНа Электро-Л отработают системы базовой платформы.
На Фобосе-грунте совершенно другой состав бортовых систем, так что пуском Электро-Л ни одна из проблем ФГ решена не будет
Тем хуже... :(
 А почему говорят что типа платфрмы похожи? Похожи только тем что негерметичные?
1. Ангара - единственная в мире новая РН которая хуже старой (с) Старый Ламер
2. Назначение Роскосмоса - не летать в космос а выкачивать из бюджета деньги
3. У Маска ракета длиннее и толще чем у Роскосмоса
4. Чем мрачнее реальность тем ярче бред (с) Старый Ламер

Vladimir

ЦитироватьА почему говорят что типа платфрмы похожи? Похожи только тем что негерметичные?
Конструкция приборного негерметичного отсека, который за форму называют гайкой, одинакова, а все остальное разное. А одинаковой она выбрана, исходя из интересов производства.

fan2fan

(подниму тему вверх)
А какие вообще схемы доставки грунта с Марса возможны ? Похожи ли они на схемы пилотируемого полета или нет ? Например, если схема "соединение на марсианской орбите" - то будет ли выгода, ведь нужна система поиска и стыковки, которая имеет определенную массу и т.д. Плюс в такой схеме - если на завершающем этапе предполагается не спуск на Землю, а доставка образцов на орбитальную станцию (тогда оправдаются большие размеры орбитального блока и можно повторно использовать стыковочный узел). Или, как еще один варинат - если орбитальным блоком на Землю доставляются одновременно несколько образцов, доставленные из разных районов Марса, несколькими пусками с поверхности. Правда, в последнем случае, из-за риска "потери всего на обратном пути" становится соблазнительным пилотируемый полет к орбите Марса, хотя и без посадки на поверхность (скажем, в качестве пробного, испытательного). Тогда схема будет пирамидальной: сбор образцов роверами, доставка на взлетные блоки, доставка блоков на орбитальный корабль на марсианской орбите, возвращение на Землю
 
В общем, мне как ламеру кажется, схема будет зависеть от целевой массы доставляемого грунта. Какой же она должна быть, чтобы удовлетворить все запросы ? Могу предположить, что в доставочной миссии выгодны большие массы образцов - такие, чтобы не только позволить сделать химический анализ, но и морфологический какой-нибудь (минералогия). Тогда к роверам должны быть повышенные требования - грузоподъемность, способность "отколупливать" и т.д.
 
А минимальное количество грунта какое ? Возможна ли установка маленького взлетного модуля прямо на крупный ровер ? Пусть таскает - не будет проблемы возвращения к взлетному блоку, а ровер сможет заезжать в такие места, откуда трудно выбраться, но можно направить взлетник прямо на марсианскую орбиту.
Жертвы неизбежны ! (с)

Виктор Левашов

ЦитироватьПусть таскает - не будет проблемы возвращения к взлетному блоку, а ровер сможет заезжать в такие места, откуда трудно выбраться
Полагаете, проблема таскать на себе взлетный модуль, как улитка - раковину, меньше, чем вернуться к общему взлётному модулю?
И если он залезет в такое место, откуда не сможет выехать - сильный уклон, скажем - полагаете, стартовать в такой позиции возможно?
Причем, если он будет таскать на себе взлётный модуль, шансы застрять где-нибудь, не добравшись до планируемого места, значительно увеличатся.

fan2fan

Зависит от соотношения массы ровера и модуля ИМХО. Если ровер крупный, скажем 2 тонны (больше, чем будущий Mars Science laboratory), то почему на нем не установить взлетник 250-300 кг (или меньше - чтобы до орбиты только) ? Т.е. тяжелые роверы все по максимуму исследуют на поверхности и только наиболее непонятное направляют на орбиту, где эти взлетники собирает орбитальный блок. Против сложных условий старта ИМХО можно использовать катапульту (раз с подводной лодки ракеты сквозь воду запускают, то против уклона бороться - как-нибудь)
Жертвы неизбежны ! (с)

нейромантик

Маленький (и ещё более ламерский вопрос чем все предидущие): а зачем вообще нужен Марсианский грунт?
Я в курсе лишь про одну действительно глобальную задачу, которую можно решить с его помощью - анализ изотопного состава. Чего там ещё может быть потенциально интересного?

К стати, биологическую опасность напрасно сбросили со счетов так рано. Биологическому агенту совсем не обязательно быть большим и присутствовать в заметных количествах чтобы начать влиять на земные живые существа. Пары вирусных тел будет вполне достаточно, или одной единственной споры. Если на Марсе была биосфера, и она развивалась по тем же законам, что и Земная (либо она была ей близкородственна - в результате панспермии) то вирусы будут вполне способны поражать клетки земных организмов, а спора сможет развиться в полноценный организм ещё не известно как взаимодействующий со средой.
Моя наглая самореклама:

art-of-blacksmith.ru

Chilik

ЦитироватьЯ в курсе лишь про одну действительно глобальную задачу, которую можно решить с его помощью - анализ изотопного состава. Чего там ещё может быть потенциально интересного?
Анализ изотопного состава, во-первых, ни нафиг никому не нужен на данном этапе (IMHO, конечно). А, во-вторых, в принципе эта задача решается. Но - "неуловимый Джо" (C)
В наземных лабораториях качество данных будет безусловно выше. Но какую ценность будет иметь случайным образом взятые образцы породы - не знаю. Вот если бы там был найден старый стоптанный ботинок или окурок - тогда да. :)

Liss

ЦитироватьА какие вообще схемы доставки грунта с Марса возможны ? Похожи ли они на схемы пилотируемого полета или нет ?

Текущее понимание схемы двухпусковой американо-европейской экспедиции за грунтом описано в http://mepag.jpl.nasa.gov/reports/iMARS_FinalReport.pdf .
Сказанное выше выражает личную точку зрения автора, основанную на открытых источниках информации

pkl

ЦитироватьМаленький (и ещё более ламерский вопрос чем все предидущие): а зачем вообще нужен Марсианский грунт?
Я в курсе лишь про одну действительно глобальную задачу, которую можно решить с его помощью - анализ изотопного состава. Чего там ещё может быть потенциально интересного?

К стати, биологическую опасность напрасно сбросили со счетов так рано. Биологическому агенту совсем не обязательно быть большим и присутствовать в заметных количествах чтобы начать влиять на земные живые существа. Пары вирусных тел будет вполне достаточно, или одной единственной споры. Если на Марсе была биосфера, и она развивалась по тем же законам, что и Земная (либо она была ей близкородственна - в результате панспермии) то вирусы будут вполне способны поражать клетки земных организмов, а спора сможет развиться в полноценный организм ещё не известно как взаимодействующий со средой.

Да. А ещё на ум приходит анализ какой-либо чрезвычайно сложной органики /вроде толина/, на месте детальному анализу не поддающейся. Хотя в свете достижений современных АМС... не лучше ли сделать нормальный ровер с хорошим газовым хроматографом и масс-спектрометром, сканирующим электронным и/или атомным силовым микроскопом и т.п. аналитической аппаратурой? Ведь в любом случае число образцов, изученных на месте, будет намного больше образцов, привезённых на Землю. А стоимость каждого из этих проектов вполне соизмерима.
Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан

Дмитрий Виницкий

Так это и есть MSL :)
+35797748398

KBOB

ЦитироватьМаленький (и ещё более ламерский вопрос чем все предидущие): а зачем вообще нужен Марсианский грунт?
Я в курсе лишь про одну действительно глобальную задачу, которую можно решить с его помощью - анализ изотопного состава. Чего там ещё может быть потенциально интересного?

Когда простые анализы марсианского грунта перестанут приносить результаты, потребуется посылать все более сложные марсоходы, в конце концов сравнимой по сложности задачей окажется доставка грунта с Марса на Землю.
То-есть следующий по сложности после MSL аппарат был бы тяжелее, сложнее и дороже, чем доставка марсианского грунта.
После доставки 5-10 образцов марсианского грунта, новую информацию могут дать только более сложные (и дорогие) эксперименты - пилотируемая экспедиция, например.
Россия больше чем Плутон.

нейромантик

Хм-м-м-м... Ребята, а не подскажете, чего нового может быть в образцах, появившихся в условиях близких к Земным? Понимаю там Венеру - огромное давление, температура, безводная среда, и пр. А здесь?
Йа-йа, например, даже и без анализов, дистанционно определяет что чем является - где там гипс, где прочие осадочные породы. Условия образования - одни и те же.

К стати. именно изотопный анализ самый интересный - он позволит определить место и условия образования Марса в Солнечной системе.
Моя наглая самореклама:

art-of-blacksmith.ru

pkl

ЦитироватьТак это и есть MSL :)

Ну да. И технически гораздо проще.

Цитировать
ЦитироватьМаленький (и ещё более ламерский вопрос чем все предидущие): а зачем вообще нужен Марсианский грунт?
Я в курсе лишь про одну действительно глобальную задачу, которую можно решить с его помощью - анализ изотопного состава. Чего там ещё может быть потенциально интересного?

Когда простые анализы марсианского грунта перестанут приносить результаты, потребуется посылать все более сложные марсоходы, в конце концов сравнимой по сложности задачей окажется доставка грунта с Марса на Землю.
То-есть следующий по сложности после MSL аппарат был бы тяжелее, сложнее и дороже, чем доставка марсианского грунта.
После доставки 5-10 образцов марсианского грунта, новую информацию могут дать только более сложные (и дорогие) эксперименты - пилотируемая экспедиция, например.

Стоимость сопоставимая, но тарантас на Марсе сможет взять и изучить гораздо бОльше образцов, чем самый раскрутой Сэмпл Ретурн. Вот смотрите: за пару лет работы на Марсе марсоход собрал несколько десятков образцов. Как их доставить на Землю? А представляете, какая драчка начнётся среди учёных при определении степени очерёдности доставки?
Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан

Salo

http://www.spaceflightnow.com/news/n1004/29mars/
ЦитироватьMaking a Mars sample return mission more affordable

BY STEPHEN CLARK
SPACEFLIGHT NOW
Posted: April 29, 2010

Scientists are proposing splitting an ambitious multibillion-dollar mission to return samples from Mars into three pieces to ease budget concerns, officials said this week.


Artist's concept of a Mars sample return mission. Credit: NASA/JPL
 
Speaking to reporters from an astrobiology conference in Houston, researchers said the next round of robotic missions to explore the solar system will be better equipped to hunt for past or present life.

The holy grail of those missions is a project to collect soil samples from Mars and return them to Earth. Officials did not disclose a predicted cost for the mission, but it will be expensive enough to warrant a joint endeavor between NASA and the European Space Agency.

A joint Mars exploration initiative finalized last year between NASA and ESA calls for a cooperative sample return mission some time in the 2020s. The sample return effort would follow joint orbiters and landers launching in 2016, 2018 and 2020.

"It is a hellishly difficult mission," said Steve Squyres, principal investigator of the Mars rovers now exploring the Red Planet. "It always has been and always will be. The difficulty is part of why it's been 20 years in the future for the past 20 years."

NASA and ESA are carefully planning the missions to search for potential concentrations of organic material, the building blocks of all life.

"That would be a really good finding on Mars because if we can find the organic matter, then we have a real reason to think that there might once have been life there," said Bill Schopf, a researcher at the University of California, Los Angeles.

Squyres is also chairman of the National Research Council's Decadal Survey culling concepts for the next phase of planetary exploration. The NRC survey will recommend several missions to NASA next year.

The panel of independent scientists is considering 28 proposals, and many of the would-be probes will focus on the search for life or habitable conditions.

One of the concepts is a Mars sample return mission that would be divided into three separate missions to select, gather and launch material back to Earth.

The first component in the piecewise approach would be a rover to choose the most scientifically-rich samples and collect the material. A lander would next be dispatched to Mars to pick up the samples and launch them into orbit around the Red Planet. The final mission would rendezvous with the orbiting canister and return the soil to Earth.

"Those three parts always had to be there," Squyres said. "You always need a rover to find the right rocks, you always need something to blast them into orbit, and you always need something to bring them home."


Credit: ESA
 
Officials say the Mars sample return project would be the most costly and complex robotic mission ever launched into the solar system.

"What we're saying is it's possible to string those out in time, with gaps of potentially years between each one," Squyres said. "It makes the overall program more affordable because it spreads the cost out over time."

Material brought back from the Martian surface would give scientists unrivaled insight into whether the planet has ever harbored life. Officials say one-way missions to Mars can only do so much.

"I think we're going to need to study the samples here on Earth, rather than robotically," Schopf said. "I think if we had the rocks back tomorrow morning, and I had them in my lab, I think we could solve this problem."

Scientists also announced this week a crucial discovery in northern Italy, where researchers found microscopic fossils of primitive life forms embedded in gypsum.

The gypsum, a mineral left behind when water dries up, formed when part of the Mediterranean Sea evaporated about six million years ago, according to Schopf.

"Why does that matter? First of all, there's been almost no work ever done here on Earth looking for fossils in gypsum because we all assumed there wouldn't be anything in there, and we were wrong," Schopf said.

The finding gives scientists "great hope that sulfates on Mars might harbor a similar kind of suite of fossils," said Jack Farmer, a scientist at Arizona State University.

Gypsum is present at the Martian north pole and near Valles Marineris, a giant canyon that would stretch across the width of North America on Earth.

The Opportunity rover landed in 2004 on sulfate material similar to gypsum at Meridiani Planum, a sweeping plain with a smooth surface.

"There isn't a silver bullet for finding life," said Mary Voytek, the astrobiology senior scientist at NASA Headquarters. "It has to be put into context. We need photographs, we need information about the mineralogy, and we need information about organics."
"Были когда-то и мы рысаками!!!"

Salo

http://www.mignews.com/news/technology/world/290410_103249_56290.html
Цитировать29.04 10:25   MIGnews.com

Американское космическое агентство НАСА планирует 28 миссий, основной задачей которых станут поиски форм жизни в пределах нашей солнечной системы".

"Астробиология и поиски иной формы жизни станут центральными задачами в изучении нашей солнечной системы", - заявил Стив Сквирс, исследователь из Корнельского университета в Итаке, штат Нью-Йорк.

"Мы планируем, в общей сложности, 28 различных миссий, охватывающих пространство от от Меркурия до объектов в глубине солнечной системы", - пояснил он.

Среди наиболее важных экспедиций - 3-этап марсианской миссии, в рамках которой на Землю будут доставлены образцы марсианскго грунта.
"Были когда-то и мы рысаками!!!"

Дмитрий Виницкий

ничего такого НАСА не планирует. Эти 28 миссий - из списка предложений, и возраст этого сообщения, около месяца. До выступления Обамы.
+35797748398

Salo

http://www.spaceflightnow.com/news/n1007/20sample/
ЦитироватьMars sample return mission could begin in 2018
BY STEPHEN CLARK
SPACEFLIGHT NOW
Posted: July 20, 2010

Space officials in the United States and Europe are planning an ambitious dual-rover mission that could start collecting Martian soil samples in 2018 to be picked up by a subsequent mission and returned to Earth in the 2020s.


Artist's concept of the ExoMars rover. Credit: ESA
 
The costly mission would blast off on an Atlas 5 rocket in 2018 and land two rovers on Mars with a single "sky crane" descent system that will be tested for the first time at the Red Planet in August 2012.

It would be the first time two rovers will be delivered to the same landing site on Mars.

The European Space Agency's ExoMars rover and a $2 billion NASA Mars Astrobiology Explorer-Cacher mission are the leading candidates for the tandem project.

ExoMars carries a drill to burrow into the Mars subsurface and retrieve samples from as deep as six feet underground. Some of that soil could be placed inside a high-tech storage device on NASA's rover for eventual return to Earth, according to Doug McCuistion, head of the agency's Mars exploration program.

"There may be a possibility to actually cache subsurface samples that the ExoMars drill collects, which had not been in our plans before," McCuistion said in an interview last week.

Marcello Coradini, ESA's coordinator for solar system missions, confirmed the studies of placing underground samples into a NASA cache for later retrieval.

"We're hoping that what we do with our rover is actually collect the samples that we will then go back in the 2020s to retrieve in the Mars sample return campaign," McCuistion said.

A simple sample cache was originally planned for NASA's Mars Science Laboratory launching next year, but officials removed the payload due to scientific and technical concerns, according to McCuistion.

Spacecraft traveling from Earth to Mars can only launch about every 26 months, limiting sample return options. Scientists agree the best strategy is to spread the effort across three missions to spread the high cost of the endeavor among several years.

"By breaking it up into those three pieces, you can sort of thread the costs and spread some of the risks over multiple missions and make the overall program both more robust and more affordable," said Steve Squyres, a Cornell University researcher leading an independent review of potential NASA science missions.

Called the decadal survey, the review will rank the scientific value of 28 proposed missions for the next 10 years.

The ultimate timing of a sample return campaign will boil down to the budget of both NASA and ESA, McCuistion said.


An early sketch of the Mars Astrobiology Explorer-Cacher rover. Credit: NASA
 
David Southwood, ESA's director of science and robotic exploration, said kicking off a sample return campaign by 2020 "would mean going above the 200 million (euros) a year we're assuming as a steady-state (budget) in the late part of this decade."

Squyres said the decadal survey will attempt to settle on an estimated total cost for three sample return missions. Recent cost projections have pegged the effort's total price at more than $5 billion.

"(The sample return missions) could be spaced as close as close as three consecutive opportunities," McCuistion said. "We believe that budgets will probably require some distance between them. The Europeans will share some of those mission responsibilities with us, so we're thinking the gap between launches could be shrunk significantly."

Planners haven't decided on a schedule for the sample's return to Earth, and it's possible the the precious soil could wait for up to six years -- or even longer -- before NASA and ESA can afford to send a mission to bring it back.

One sample return option involves launching the caching mission in 2018, skipping a launch opportunity in 2020, then sending the an orbiter to Mars in 2022 that would ferry the cargo back to Earth, according to McCuistion.

Another mission could fly in 2024 to fetch the samples from the 2018 landing site and launch the cache into orbit around Mars, where it would dock with the return orbiter and begin the journey home.

But that's just one strategy.

The results of the decadal survey report, which is due in March 2011, will also factor into NASA's decision on when to insert a Mars sample return campaign into its packed mission portfolio.

"We still have a long way to go in design work, but the concepts that we're working right now look promising," McCuistion said. "It's going to rest mainly on budgets and what the decadal survey comes back and says."

One competitor for scarce NASA planetary science funding in the 2020s is a $4.5 billion flagship mission to Jupiter, another joint undertaking between NASA and ESA.

The Jupiter mission would include a pair of orbiters on two separate launches in 2020.

The decadal survey's ranking of the Jupiter flagship mission and Mars sample return will likely decide which project launches first.

"If the decadal survey comes back and says outer planets flagship needs to go first, and sample return goes second, that puts us in the early-to-mid-2020s, which is fine," McCuistion said. "If they say sample return needs to go first, I don't know what that would mean, but it's going to be difficult to accelerate it earlier than 2020 itself, with 2018 being the collection period."

Squyres declined to discuss details of the decadal survey while the reviews are in progress.


Artist's concept of a sample return craft blasting off from Mars. Credit: ESA
 
Although there is ample time to refine new technologies to enable a roundtrip flight to Mars, McCuistion said the chief technical hurdle facing engineers is launching a rocket from the Martian surface.

"Launching rockets from Earth is one thing," McCuistion said. "Launching rockets from Mars is completely different."

NASA has received technical proposals from engineering teams to begin conceptual design work on a Mars ascent vehicle. The agency expects to award study money to winning teams, McCuistion said.

An ESA methane-sniffing orbiter and landing technology demonstrator have already been approved to launch on an Atlas 5 rocket in January 2016. The Trace Gas Orbiter and Entry, Descent and Landing demonstration mission will be managed by ESA, but it will be the first project executed under the joint Mars exploration initiative between Europe and the United States.

ESA's council of member states last December approved 850 million euros, or about $1.1 billion, for Europe's 2016 orbiter and landing demo, plus the ExoMars rover in 2018.

All three probes are under a tight budget ceiling of 1 billion euros, or approximately $1.3 billion. ESA will request the rest of the funding in a few years, according to Southwood.

"When we write the history, that decision taken by the council will be seen as the turning point," Southwood said in a July 8 interview. "That will be the point at which the Europeans said the future Mars program is together with the United States."
"Были когда-то и мы рысаками!!!"

Salo

http://www.spacenews.com/civil/120925-mars-planning-group-endorses-sample-return.html
ЦитироватьTue, 25 September, 2012
Mars Planning Group Endorses Sample Return[/size]
By Dan Leone
   
    WASHINGTON — A blue-ribbon panel chartered to help NASA reboot its robotic Mars Exploration Program outlined several approaches Sept. 25 for returning samples of the red planet to Earth but did not endorse any one plan.

    NASA called for the reboot in February after withdrawing from the European Space Agency's ExoMars sample-collection campaign, citing budget constraints. Former NASA Mars czar Orlando Figueroa was selected to lead the Mars Program Planning Group, which was assigned to come up with options for a $700 million to $800 million mission that could be launched as soon as 2018. Figueroa and his team started their work in March and publicly released their preliminary report Sept. 25.

    The preliminary report includes concepts and cost estimates for four rovers and four orbiters that could be sent to Mars between 2018 and 2024. Favorable Mars launch opportunities occur only about every two years.

    John Grunsfeld, NASA's associate administrator for science, said during a media teleconference following the report's release that the agency will announce its plans for the so-called Mars Next Decade effort in February with the release of the White House's 2014 budget request. Grunsfeld said that NASA is free to consider spacecraft and mission architectures other than those outlined in the Figueroa group's report.

    It is not yet clear when Mars Next Decade would launch. But Grunsfeld said that if NASA decides to take advantage of the 2018 launch opportunity work would have to get going within the next four to six months and the chosen mission would be subject to "an $800 million cost bogey."

    With that budget constraint, NASA would be limited to an orbiter, Figueroa said.

    "That drives you toward either launching an orbiter first or delaying until 2020 and then beginning with a rover," said Figueroa, affirming a statement he made in May when his group was still in its fact-finding phase. To send a rover to the martian surface, "you're now talking $1 billion to $1.5 billion or so. So with that, that means that you have to delay things and accumulate the money you need to implement that."

    Rover concepts included in the Sept. 25 report ranged from designs based on NASA's twin Mars Exploration Rovers, launched in 2003, to variations of the Curiosity rover at the heart of NASA's car-sized flagship Mars Science Laboratory mission. Curiosity touched down on the martian surface Aug. 6 to begin a two-year mission to determine whether Mars could ever have supported life.

    Of the orbiter concepts discussed in the report, one whose cost and scope cleaves closely to the criteria NASA laid out in February is a combination telecommunications and science spacecraft that would be based on previously flown NASA designs and launched aboard a Space Exploration Technologies Corp. Falcon 9 rocket. This orbiter would cost about $700 million to build and launch and combine elements of NASA's 2005 Mars Reconnaissance Orbiter and the 2013 Mars Atmosphere and Volatile Evolution spacecraft, according to the Sept. 25 report.

    A barebones telecommunications-relay orbiter with no science payload, which Figueroa said was the absolute minimum for the Mars Next Decade mission, would cost about $200 million to build.

    One sample-return proposal in the report calls for using the Space Launch System (SLS) heavy-lift rocket NASA is developing for future crewed missions beyond Earth-orbit to send a lander and combined data-relay and sample-return orbiter to Mars in a single launch.

    Figueroa's report said such a mission, launched by the 70 metric-ton variant of SLS and dependent upon a yet-undeveloped Mars Ascent Vehicle, would not be possible until after 2024, seven years after SLS' planned maiden flight.

    Meanwhile, it will take until mid- to late-October for Figueroa's group to release its full report, including lengthy appendices, that will "really allow us to dig in . . . to the technical details of some of the elements" proposed in the preliminary report, Grunsfeld said.

    Although Mars Next Decade was conceived as stand-in for ExoMars, planetary science advocates, citing the priorities established in their latest 10-year decadal survey science roadmap, made the case for keeping sample return at the heart of Mars Next Decade. If NASA could not afford a Mars Next Decade mission that contributed to sample return, the agency should instead spend its money on a mission to some other solar system destination, Steven Squyres, the head the of the NASA Advisory Council, said in February.

    Grunsfeld and Figueroa both said Sept. 25 that the easiest way to design a Mars Next Decade mission that benefits three different NASA mission directorates — science, human space flight and space technology — was to center the mission on sample return.

    "Sample return represents the best opportunities to find synergies, technologically, between the programs," said Grunsfeld.

    Likewise, Figueroa said "sample opportunity stands out as a prime opportunity to connect those objectives."

    At least one former NASA official was pleased that sample return figured so prominently in the Figueroa group's report.

    "As a long time Martian I am delighted to see that sample return architectures were identified as the most promising way to move forward," said Scott Hubbard, NASA's first Mars czar and the former director of NASA's Ames Research Center.[/size]
"Были когда-то и мы рысаками!!!"

Salo

http://www.aviationweek.com/Article.aspx?id=/article-xml/AW_10_01_2012_p36-500316.xml
ЦитироватьESA May Have Role In NASA Mars Sample Mission[/size]
By Frank Morring, Jr., Amy Svitak
Source: Aviation Week & Space Technology

October 01, 2012

Frank Morring, Jr. Washington and Amy Svitak Liege, Belgium

NASA has decided it can do a Mars sample-return mission on its own, but it will continue to collaborate with the European Space Agency on Mars exploration despite dropping out of Europe's ExoMars program last year.

Even though Europe has shifted to working with Russia on ExoMars, the program's 2016 orbiter could help provide data and command relays between Earth and a 2018 NASA rover on the surface of Mars. However, it remains to be seen if there will be such a rover, and what it could do if NASA finds the funds to build it.

The U.S. space agency has 4-6 months to decide how it will proceed under its reduced Mars-exploration funding plan. That decision will be shaped by a new set of mission options from the agency's Mars Program Planning Group (MPPG) instrument landing system, and possibly by congressional signals on fiscal 2013 funding levels for Mars. Also in the mix is the role of potential collaborators outside NASA's Science Mission Directorate, including the European Space Agency (ESA).

"Now what we're trying to do is go out and work with the human exploration folks and the technology development folks and decide how we synergize the four areas of NASA and still enable the U.S.—along with our international partners—to put humans on Mars in the 2030s," said NASA Administrator Charles Bolden, speaking Sept. 26 during a visit to Liege, Belgium.

ESA Director General Jean-Jacques Dordain says his agency was involved in the MPPG study, and that he expects ESA to play a role in any future effort to send humans to Mars. But first, Europe needs to rebound from NASA's almost total withdrawal last year from its ExoMars campaign, a two-pronged mission that would send robotic spacecraft to the red planet in 2016 and 2018.

Dordain says he plans to meet with Roscosmos Director Vladimir Popovkin at the International Astronautical Congress in Naples, Italy, this week to finalize a revamped ExoMars strategy. ExoMars prime contractor Thales Alenia Space of France and Italy already is making progress on the mission.

"We are cutting the metal for the 2016 mission," Dordain says. "It's not yet a reality, but close to a reality."

In Washington, the MPPG reported last week that NASA may be able to return samples from Mars without significant international cooperation, in part by eliminating stovepipes in the way it organizes for scientific and human space missions. Set up after the Obama administration dropped its plans to collaborate on ExoMars, the planning group found lower-cost—but less-capable—sample-return missions still are possible, particularly if NASA's space science and human exploration organizations work together more closely, using the agency's Office of the Chief Technologist to develop hardware that serves the needs of both.

"Sending a mission to go to Mars and return a sample looks a lot like sending a crew to Mars and returning them safely," says John Grunsfeld, a former space shuttle mission specialist who is the associate administrator for science.

Headed by retired NASA "Mars czar" Orlando Figueroa, agency and outside scientists and engineers on the MPPG spent five months developing options for a U.S.-only mission that follows the sample-return priority set in the "decadal survey" of planetary scientists run by the National Research Council last year.

Briefing the NRC's Committee on Astrobiology and Planetary Science (CAPS) Sept. 25, Figueroa presented robotic Mars options that could fly in the planetary launch windows in 2018, 2020 and 2022. With U.S. spending for the next mission to Mars limited to a Discovery-class mission capped at $800 million, Figueroa said there is probably not enough funding to land another rover on Mars in the 2018 window to identify and cache samples for eventual return to Earth.

Congress may not agree, however. Both houses added back $100 million for Mars exploration in fiscal 2013 spending measures that are still pending, although superseded by continuing resolutions. At that level, some of the options presented by the MPPG could be affordable under the fairly rigorous cost estimates included in the MPPG report.

"Basically we're getting what the decadal survey wanted in terms of science, and now the cost numbers have been looked at much more carefully," says Arizona State University geological sciences Prof. Philip R. Christensen, who is chairman of the CAPS panel that Figueroa briefed. "We know MSL [the Mars Science Laboratory] worked, so we can rely on build-to-print MSL elements, so I think the $1.5-1.7-billion estimate is far closer, far more accurate, and will do exactly the science that the decadal survey was asking for."

Based on the $800 million cost cap the MPPG used, Figueroa left the impression that a rover in 2018 could supplement the aging "infrastructure" of Mars orbiters able to relay commands and data. The planning group lists four orbiter options of increasing complexity that could be flown within the $800 million constraint. They include a $200 million single-purpose relay satellite launched to Mars as a secondary payload, and a combined science and relay orbiter based on the Mars Reconnaissance Orbiter and the upcoming Mars Atmosphere and Volatile Evolution (Maven) mission that could probably stay under the cost cap if launched on private contractor SpaceX's Falcon 9. Other options were a $500 million solar-electric-propulsion sample-return orbiter built with commercial components and piggybacked on the launcher for a lander, and an orbiter that would conduct research while waiting for sample deliveries from the surface, at a cost of $700 million plus a Falcon 9 launch.

Sample-return also would require a Mars ascent vehicle that possibly could be carried by the most expensive rover option the planning group identified. Designated Rover D, the vehicle would be a solar-powered version of the nuclear-powered MSL to save money. It would carry an ascent rocket along with a robotic arm to collect samples. Other rover options are a solar-powered version of Rover D without the ascent vehicle, designated Rover C, and two solar-powered rovers—A and B—based on the twin Mars Exploration Rovers Spirit and Opportunity, both with the guided-entry capability that put Curiosity down in Gale Crater, and distinguished from each other by the level of heritage hardware incorporated in their mechanical systems.

Christensen says the Rover D concept probably is too complex and costly to hit the 2018 planetary launch window, which scientists favor because it is sooner rather than later and offers the best planetary alignment in two decades to put a heavy lander on the surface of Mars. Rover C makes more sense, he says.

Technologies needed for a lower-cost sample-return mission—atmospheric guidance as demonstrated on MSL, hypersonic decelerators and supersonic parachutes—would also serve a human landing in the 2030s, the MPPG reported. And NASA's human-exploration directorate may be able to collaborate on sample-return for scientific study, collecting the samples in Mars orbit or elsewhere and returning them to Earth, in the process "breaking the chain" of possible biological contamination by encapsulating them in the sterile environment away from the planet.

"A lot of this is a coordination problem, and I do believe it could be better coordinated, better integrated over time," says Bobby Braun of Georgia Institute of Technology, a longtime engineering adviser on NASA's Mars program and the agency's immediate-past chief technologist. "A couple of things that the MPPG team pointed to that I thought were interesting examples of additional ways that the technology programs could be involved [include] even more advancements in entry, descent and landing technology [and] in situ propellant production."

Braun notes that all the ideas are intriguing, but need further study.

While the science community sees a sample-return mission to Mars as the "Holy Grail" of planetary space exploration, Bolden is not so sure.

"One piece of NASA, and the National Research Council, say the international community is going to figure out how to capture the Holy Grail," Bolden says. "The question for many of us is what the timing of accomplishing the Holy Grail is. Do you have to do it before you can send humans? Some would say 'Certainly.' But when Neil Armstrong landed on the Moon, we did not have a sample." [/size]
"Были когда-то и мы рысаками!!!"