SLS - space launch system (3-я попытка)

Автор Salo, 16.02.2012 10:25:55

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

tnt22

Цитироватьpat o.‏ @spacepat_o 4 ч. назад

Crawler-transporter 2 is moved under the Mobile Launcher at @NASAKennedy. Three lifts will be performed to practice lifting procedures, validate interface locations, confirm the weight of the mobile launcher, and develop a baseline for modal analysis. Photos: NASA/Kim Shiflett

Спойлер


[свернуть]

поц

#1721
А вот здесь чутка другая картинка...
ЦитироватьSPACEwatch‏ @realSPACEwatch 11 мин.11 минут назад


#NASA || Detailed Overview of all planned Space Launch System (SLS) variations.




поц

#1722
ЦитироватьSPACEwatch‏ @realSPACEwatch 5 мин.5 минут назад


#NASA || Space Launch System (SLS) Architecture Reference Configuration



tnt22

ЦитироватьDid You Know...Crawlerway at NASA's Kennedy Space Center

NASAKennedy

Опубликовано: 11 июн. 2018 г.

Watch a video infographic about the crawlerway at NASA's Kennedy Space Center in Florida. The crawlerway is the path that crawler-transporter 2 will take to carry the mobile launcher with the agency's Space Launch System rocket and Orion spacecraft atop to Launch Complex 39B. Exploration Ground Systems is preparing facilities at Kennedy to support Exploration Mission-1.
(0:33)

Искандер

Цитироватьпоц пишет:
ЦитироватьSPACEwatch ‏ @realSPACEwatch 5 мин.5 минут назад


 #NASA || Space Launch System (SLS) Architecture Reference Configuration
 

Что-то я запутался, это когда же вернулись к J-2X на второй ступени??? 8-.
Или это старое?
Aures habent et non audient, oculos habent et non videbunt.
Propaganda non facit homines idiotae. Propaganda fit pro fatuis.

Дмитрий В.

ЦитироватьИскандер пишет:
Цитироватьпоц пишет:
ЦитироватьSPACEwatch ‏ @realSPACEwatch 5 мин.5 минут назад


 #NASA || Space Launch System (SLS) Architecture Reference Configuration
 

Что-то я запутался, это когда же вернулись к J-2X на второй ступени??? 8-.
Или это старое?
Старье, скорее всего. Года так 2015, но не позже 2016.
Lingua latina non penis canina
StarShip - аналоговнет!

tnt22

ЦитироватьChris B - NSF‏ @NASASpaceflight 5 мин. назад

ARTICLE: SLS Mobile Launcher set for a test rollout to 39B in August -

https://www.nasaspaceflight.com/2018/06/sls-ml-test-rollout-39b-august/ ...

Спойлер
[свернуть]

Чебурашка

На водородный бак нанесли слой грунта. 
Сейчас начнут нанесение теплозащитного покрытия. 


tnt22

Опубликована брошюра

sls_fact_sheet_06122018.pdf - 1.3 MB, 4 стр, 2018-06-13 14:09:20 UTC


Чебурашка

Межбаковый отсек.

Цилиндр - это элемент крепления твёрдотопливных ускорителей?


Дмитрий В.

ЦитироватьЧебурашка пишет:
Межбаковый отсек.

Цилиндр - это элемент крепления твёрдотопливных ускорителей?

Вроде, нет. Узел крепления находится на конце внутренней балки. На фото - возле двух мужиков:

https://www.nasa.gov/sites/default/files/thumbnails/image/maf_20180212_p_intertank_sta_breakover_-367.jpg
Lingua latina non penis canina
StarShip - аналоговнет!

Сергей

ЦитироватьЧебурашка пишет:
Межбаковый отсек.

Цилиндр - это элемент крепления твёрдотопливных ускорителей?

ЦитироватьДмитрий В. пишет:
ЦитироватьЧебурашка пишет:
Межбаковый отсек.

Цилиндр - это элемент крепления твёрдотопливных ускорителей?

Вроде, нет. Узел крепления находится на конце внутренней балки. На фото - возле двух мужиков:

 https://www.nasa.gov/sites/default/files/thumbnails/image/maf_20180212_p_intertank_sta_breakover_-367.jpg
Здесь надо поискать материал по разделению бустера с РН. Цилиндр похож на силовозбудитель с длинным ходом штока в направляющих, которые разгружают шток от поперечных нагрузок.
Поскольку ничего не читал про разделение бустера с РН - чисто фантазийная версия. При работе бустер крепится к РН двумя узлами. Верхний узел передает тягу бустера на корпус РН, крепление шарнирное по углам, но дает возможность сместить бустер вниз в продольном направлении относительно корпуса РН. Нижний узел похож на верхний, дает возможность продольного смещения бустера. При запуске бустера верхняя точка как бы зафиксирована относительно РН, нижняя точка смещается за счет удлинения корпуса бустера от внутреннего давления. Сброс бустеров вероятно производится на спаде тяги. Для этого с помощью СВ бустер смещается вниз до упора , преодолевая остаток тяги, и бустер выходит из зацепления с верхним узлом. Остается приложить поперечный импульс к верхней части бустера и бустер, вращаясь по углу вокруг упора в нижнем узле, покидает РН и летит черти куда.

Чебурашка

#1732
Ыы... это не межбак.. Это двигательная секция. И скорее всего не лётное изделее, а Static Test Article

А это, один из 55 цилиндров


Сергей

ЦитироватьЧебурашка пишет:
Ыы... это не межбак.. Это двигательная секция. И скорее всего не лётное изделее, а Static Test Article

А это, один из 55 цилиндров
Так наверное и есть. Жаль, что не копируется текст в переводчик. Если попадется конструкция узлов разделения бустеров с РН - просветите, буду весьма признателен.

tnt22

https://www.nasa.gov/exploration/systems/sls/insulation-protects-sls-from-fire-and-ice
ЦитироватьJune 21, 2018

Foam and Cork Insulation Protects Deep Space Rocket fr om Fire and Ice

Extreme temperatures -- ranging fr om minus 423 degrees Fahrenheit to more than 200 degrees Fahrenheit -- call for novel thermal protection systems on NASA's new heavy-lift rocket, the Space Launch System (SLS). NASA is advancing state-of-the-art technology for thermal protection with more environmentally friendly materials and 3D printed molds for smaller parts. With the power and precision needed for sending humans to deep space, SLS will launch astronauts in NASA's Orion spacecraft to distant destinations such as the Moon and Mars.
Спойлер

NASA technicians have completed application of spray-on foam thermal insulation on the Launch Vehicle Stage Adapter, which is being outfitted for Exploration Mission-1, the first flight of NASA's new rocket, the Space launch System and the Orion spacecraft. The adapter, which connects the rockets 212-foot-tall core stage to the upper in-space stage of the rocket, is the largest piece of hardware that has ever had insulation applied by hand at NASA's Marshall Space Flight Center in Huntsville, Alabama.
Credits: NASA/Tyler Martin
View Image Feature

Spray-on foam insulation, along with other traditional insulation materials such as cork, will provide thermal protection for every rocket part, large and small. The insulation is flexible enough to move with the rocket but rigid enough to take the aerodynamic pressures as SLS accelerates fr om 0 to 17,400 miles per hour and soars to more than 100 miles above Earth in just 8 minutes. The cryogenic fuel, made up of liquid hydrogen and liquid oxygen, that powers the rocket has to stay extremely cold to remain liquid. Hydrogen has to remain at minus 423 degrees Fahrenheit and oxygen at minus 298 degrees Fahrenheit. If temperatures rise too high, the fuel would become a gas.

"As the Space Launch System flies, it builds up tremendous heat. Without insulation, heat fr om launch would affect the stability of the cryogenic propellants and the rocket's structural integrity would be compromised," said Michael Alldredge, who leads the thermal protection system team for the SLS core stage at NASA's Marshall Space Flight Center in Huntsville, Alabama. "NASA is asking this unique foam material to do the incredible job of protecting critical rocket systems, which vary from large structures to electronics and fuel lines, in an unforgiving launch environment with extreme temperatures and pressures."

Materials engineers qualified the third-generation, orange-colored spray-on foam insulation to meet the harsh environments that the SLS will experience. At the same time, they made the foam more environmentally friendly. The foam insulation is composed of two liquids -- isocyanate and a special polyol blend -- that stay separate in the pumping system and mix in the spray gun before releasing and rising into foam -- similar to hair mousse. When the foam is applied, it gives the rocket a light-yellow color that the Sun's ultraviolet rays eventually "tan," giving the SLS core stage its signature orange color.

Spray the Big Stuff
Спойлер
Foam will protect the larger of the hardware, including the entire SLS core stage that is the 212-foot-tall backbone of the rocket. The foam is applied with robotic or hand-held spray guns, and, much like painting walls in a home, hardware has to be primed and taped off before spraying begins. Primer serves as corrosion protection from the environment and enhances the bond between the insulation and the rocket.

Engineers will use a robotic system to apply both primer and foam to the cryotanks at NASA's Michoud Assembly Facility in New Orleans wh ere the core stage is being built. Manually-sprayed foam will cover the domes, or bottoms, of both cryotanks. The largest piece of SLS hardware built at Marshall, the launch vehicle stage adapter, which serves as a connector between the core stage and the interim cryogenic propulsion stage will have manually-sprayed foam.

The original plan was to use cork for the SLS launch vehicle stage adapter, according to Amy Buck, Marshall's launch vehicle stage adapter thermal protection systems lead, but the team determined that foam would be more efficient. "The foam is lighter," she said. "And since we have the resources to spray it by hand at Marshall, we are saving time and money because we don't have to ship it to Michoud. We spray on the foam at Marshall at the same time the core stage pieces for the first SLS mission get their foam applied at Michoud."

"It takes about three months for the entire foam application process," Buck explained. "The prep work takes longer than the actual spraying. The hand-spraying only takes about 30 minutes for each 4-foot-wide section."
[свернуть]
3-D Printed Molds Help Protect Smaller Stuff
Спойлер
Insulation protects many small parts of the rocket that play big roles. The avionics, the "brains" of the rocket, are located throughout the vehicle. Other small parts like the intertank's exterior pockets, the engine section's internal ducts and close-out areas of hardware -- wh ere two major pieces connect -- require manually-sprayed foam or foam cast with 3-D printed molds.

"NASA is using a novel 3-D printing process to make customized molds for certain parts," said Alldredge. "Some parts have unique geometries or are in locations in the rocket wh ere it is difficult to cover them with spray foam. The 3-D printed molds allow us to shape insulation to protect specific parts."

Small hardware like internal fuel systems and brackets on the feedline that run along the outside of the core stage and connect it to the engine section need pour foam. The foam is mixed and poured into a mold before it expands to fill the shape it enters.
[свернуть]
Put Some Cork on It
Спойлер
Cork is heavier than foam but provides even stronger protection for certain applications. Cork comes in sheets and is applied to areas that have high predicted heat loads, like the core stage engine section, which houses four RS-25 engines that produce 2 million pounds of thrust. Cork is applied under the solid rocket boosters that provide 75 percent of thrust at liftoff and on the fairings, the areas wh ere feedlines come out of the intertank and run down the rocket to connect the intertank to the other hardware.

After thermal protection material density and adhesion are verified for both foam and cork, engineers take thickness measurements to ensure the required amount of thermal protection has been applied. Overall thermal protection systems thickness for SLS ranges from about a half-inch to 2 inches. The launch vehicle stage adapter requires 0.7 inches of foam while the hydrogen tank requires around 1.2 inches because of its extremely cold temperature. The final system level test of the insulation, prior to flight, will be when the entire core stage will be tested with all four RS-25 engines firing, and the foam and cork guarding the hardware as hot and cold collide.
[свернуть]
[свернуть]
Last Updated: June 21, 2018
Editor: Jennifer Harbaugh

ZOOR

ЦитироватьСергей пишет:
бустер, вращаясь по углу вокруг упора в нижнем узле, покидает РН и летит черти куда.
Кстати, вылавливать как Шаттловские будут?
Я зуб даю за то что в первом пуске Ангары с Восточного полетит ГВМ Пингвина. © Старый
Если болит сердце за народные деньги - можно пойти в депутаты. © Neru - Старому

Apollo13

ЦитироватьZOOR пишет:
ЦитироватьСергей пишет:
бустер, вращаясь по углу вокруг упора в нижнем узле, покидает РН и летит черти куда .
Кстати, вылавливать как Шаттловские будут?
Нет.

tnt22

https://www.nasa.gov/launching-science-and-technology/solar-sail-test-will-study-near-earth-asteroid
ЦитироватьJune 29, 2018

NASA Tests Solar Sail for CubeSat that Will Study Near-Earth Asteroids


The NEA Scout solar sail is deployed at the NeXolve facility in Huntsville, Alabama.
Credits: NASA/Emmett Given

NASA's Near-Earth Asteroid Scout, a small satellite designed to study asteroids close to Earth, performed a successful deployment test June 28 of the solar sail that will launch on Exploration Mission-1 (EM-1). The test was performed in an indoor clean room at the NeXolve facility in Huntsville, Alabama.

NEA Scout is a six-unit CubeSat that relies on an innovative solar sail for propulsion. It is one of 13 secondary science payloads NASA sel ected to fly on EM-1. The first in a series of increasingly complex missions, EM-1 will be the first integrated test of NASA's Space Launch System rocket, NASA's Orion spacecraft and the newly upgraded Exploration Ground Systems at Kennedy Space Center in Florida. In addition to testing these integrated systems, this first flight will also provide the rare opportunity for these small experiments to reach deep space destinations, conducting science missions and testing key technologies beyond low-Earth orbit.
Спойлер
"Developing a sail to harness the sun's energy to fly through space was once thought impossible," said Joe Matus, NEA Scout project manager at NASA's Marshall Space Flight Center in Huntsville, Alabama. "Just in this decade we've seen innovation and progress on this promising technology and NEA Scout is another step to using solar sails to explore our solar system. This team has worked really hard to make this technology a reality, and knowing that the sail we just tested will be the actual sail that propels NEA Scout through space is very exciting, and a testament to the knowledge and capabilities of our team."

NEA Scout will deploy from the rocket after the Orion spacecraft is separated from the upper stage. When deployed, the sail, which is square in shape, with each side about the length of a school bus, will harness the light of the sun to use as propulsion to move through space. Instead of wind, solar sails reflect sunlight for thrust, minimizing the need for fuel. This method reduces the size and weight of the spacecraft, thereby resulting in cost savings. The NEA Scout solar sail will deploy from the spacecraft using four arms -- called booms -- to hold the sail, much like a sail on a ship. After deployment, the satellite will travel to and fly-by an asteroid, taking photographic data that will help scientists better understand not only the asteroid itself, but the risks and challenges that future human exploration missions may encounter.

"Over the last couple of tests of our engineering test unit, we made improvements to the spacecraft's sail deployment system," said Tiffany Lockett, NEA Scout project system engineer at Marshall. "This test is the first and only time the sail will be deployed before it flies on EM-1, so we had to make sure the system will work correctly. We are analyzing the test data to make sure the deployment system worked as expected, before final assembly into the spacecraft and delivery for launch."

Solar sails can't run out of fuel as long as the sun shines, allowing them to propel spacecraft farther and faster than some traditional propulsion technologies. Spacecraft like NEA Scout are the next step towards larger and more capable solar sails that can take our science instruments farther into the solar system, enabling new science and exploration missions.

NASA's Advanced Exploration Systems manages NEA Scout with the team led at Marshall with support fr om NASA's Jet Propulsion Laboratory in Pasadena, California and NASA's Langley Research Center in Hampton, Virginia. AES infuses new technologies developed by NASA's Space Technology Mission Directorate and partners with the Science Mission Directorate to address the unknowns and mitigate risks for crews and systems during future human exploration missions.
[свернуть]
Last Updated: June 29, 2018
Editor: Jennifer Harbaugh

tnt22

ЦитироватьPreparing America for Deep Space Episode 17: Building the Future

NASA Johnson

Опубликовано: 6 июл. 2018 г.

Important strides have been made in 2018 for NASA's Orion, Space Launch System (SLS) and Exploration Ground Systems (EGS) programs. Teams across America and in Europe are developing and building the spacecraft, rocket and infrastructure necessary to send humans to deep space destinations including the Moon and beyond. Some major milestones include: Orion – parachute drop testing at the Yuma Proving Ground; Exploration Mission 2 crew module cone welding; Ascent Abort-2 crew module outfitting; crew module uprighting system testing; SLS – intertank test article transported to NASA's Pegasus barge at Michoud Assembly Facility and arrival at Marshall Space Flight Center; core stage engine section structural tests; successful RS-25 rocket engine testing; EGS – Orion crew module recovery rehearsal; crew access arm install on the Mobile Launcher; Interim Cryogenic Propulsion Stage umbilical install; Firing Room 1 demonstration.
(3:03)

tnt22

ЦитироватьJeff Foust‏ @jeff_foust 9 июл.

The AIAA Propulsion and Energy Forum is starting at 8 am EDT with a keynote by NASA Glenn director Janet Kavandi. That'll be webcast along with some other sessions, such as one later this morning on SLS and Orion

9 июл.

Kavandi: I think the new strategy of going to the Moon before going to Mars is a good plan; want to test technologies on the Moon before long-duration Mars missions. #AIAAPropEnergy

9 июл.

Kavandi: inaugural SLS launch, EM-1, due to happen "about two years from now," or mid-2020. (So much for the December 2019 target date...) #AIAAPropEnergy

9 июл.

Kavandi: expecting delivery of European Service Module for EM-1 Orion in late August or early September. #AIAAPropEnergy

9 июл.

Chris Cianciola, SLS deputy program manager: first three SLS missions will be of the Block 1 design with ICPS upper stage. After EM-1, planning EM-2 (first crewed mission) and a "cargo" mission, but order of those two could change. #AIAAPropEnergy

9 июл.

Lundquist: starting with EM-3 in 2023, SLS Block 1B missions will comanifest Gateway elements with Orion. (First Gateway element, the PPE, will launch on a commercial vehicle in 2022.) #AIAAPropEnergy

1 дн.1 день назад

Scott Marston, Northrop Grumman: seven of ten booster segments for SLS EM-1 mission are complete and in storage; remaining three will be done this year. Have ten weeks of margin for a Dec. 2019 launch. #AIAAPropEnergy