Люминал-А и Люминал-Б

Автор Salo, 06.11.2009 19:41:23

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

NikNikson

ЦитироватьТак оно оседать-то будет или нет? ;)

 Как я понимаю, его же и в МБРы хотели пихать. :?

Не должно :) Понятно, что есть определенный срок годности, да и реагировать может потихоньку (особенно если есть следы воды).

NikNikson

ЦитироватьC-300 пишет:
 
Цитировать
ЦитироватьКстати есть жидкости, которые при этом наоборот густеют вплоть до затвердевания. В основном результат зависит от формы и размера твердых частиц ну и от жидкой среды конечно.
Это реопексные жидкости. Но наше топливо - тиксотропное, его вязкость со временем уменьшается.
Это конечно :) На сколько понимаю при продолжительном воздействии  вязкость стремиться к предельному значению. Только не знаю характеристического времени этого процесса, вроде должно достаточно быстро.

Бродяга

Цитировать
ЦитироватьТак оно оседать-то будет или нет? ;)

 Как я понимаю, его же и в МБРы хотели пихать. :?
Не должно :) Понятно, что есть определенный срок годности, да и реагировать может потихоньку (особенно если есть следы воды).
Нет, если ракету заправлять перед стартом, то "ничего ещё". :)

 Но если она стоит заправленная, представьте себе, "всё это" оседает вниз, откуда идёт забор топлива. :)
[color=#000000:7a9ea26d56]"В тот день, когда задрожат стерегущие дом, и согнутся мужи силы; и перестанут молоть мелющие, потому что их немного осталось; и помрачатся смотрящие в окно;"[/color]

zyxman

ЦитироватьКороче, создать относительно стабильную суспензию мелкодисперсного алюминия в гидразине можно, но качать ее в двигатель - задолбаешься :(
А если насос поршневой?
"Демократия, это когда царь умный, а также добрый и честный по отношению к своим холопам".
--
Удача - подготовленный успех!

Bell

Я думаю, что с поршневым насосом будет только хуже, поскольку там переменное давление и большая скорость воздействия.

В тырнете есть ролики, где народ чумится с неньютоновской жидкостью в виде крахмального клейстера. Медленно опускают палец - как в воду, а быстро ударяют кулаком - прогибается как резина. Бегают там по большой ванне с этой хренью. Я же говорил - это характерно как раз для суспензий, к коим и относится смесь мелкодисперсного алюминия в гидразине.

Вообще физика дисперсных систем - штука удивительная. Все очень сильно зависит от размера частиц взвеси и свойств добавок. В принципе наверно можно подобрать такие соотношения, чтоб получить систему со снижающейся вязкостью, но это вопрос эксперимента.

В Википедии есть небольшая, но вполне информативная статья про неньютоновскую жидкость. В данном случае необходим так называемый псевпопластик, к которого при градиенте скорости степень меньше единицы, а следовательно вязкость с увеличением скорости снижается.
Иногда мне кажется что мы черти, которые штурмуют небеса (с) фон Браун

C-300

Кто знает, какова массовая доля алюминия в гидразине? Зная эту долю, можно, наверное, расчитать и плотность топлива по известным плотностям алюминия и гидразина.

C-300

Я слышал тут на форуме, что есть калькулятор Propep, который может посчитать скорость истечения по заданным компонентам топлива и параметрам  двигателя (соотношение компонентов, степень расширения и. п.). Можно ли расчитать для топлива азотная кислота-люминал и азотный тераоксил-люминал удельный импульс?

москвич

Приветствую участников форума.Читаю Ваш форум давно, но молча.После окончания МВТУ(в 85-ом) работал в НИИ ТП .Занимался сопровождением испытаний двигателя КБ ХМ на люминале.Это действительно желе,но при приложении напряжения сдвига - ведет себя как вязкая жидкость.Алюминий не оседал.Такая серая масса с блестящими вкраплениями.
Всё впереди....

Имxотеп

ЦитироватьЯ слышал тут на форуме, что есть калькулятор Propep, который может посчитать скорость истечения по заданным компонентам топлива и параметрам  двигателя (соотношение компонентов, степень расширения и. п.). Можно ли расчитать для топлива азотная кислота-люминал и азотный тераоксил-люминал удельный импульс?
Рекомендую скачать GDL Propep, у него человеческий интерфейс, не требующий усилий головного мозга. Нужно только помнить, что 1 атм = 14.7 psi

Про УИ.
Не знаю что такое люминал, но если взять смесь гидразин-Al-азотный тетроксид, то при давлении в камере ~150 атм предельный пустотный УИ составит 375 с,  а наземный УИ будет  ~315 с (соотношение гидразин-Al-АТ ~ 45-20-35%). Причем это собственно на гидразине, на НДМГ результаты будут хуже - 355 и 305 с соответственно.
Для сравнения: РД-253 возле земли имеет УИ ~285 с.

ааа

ЦитироватьЗанимался сопровождением испытаний двигателя КБ ХМ на люминале.
А скажите пожалуйста, являлась ли проблемой повышенная абразивность такого топлива?
"One small step for a man, one giant leap for mankind." ©N.Armstrong
 "Let my people go!" ©L.Armstrong

москвич

При содержании Ал более 10 процентов прогары критики были не редкостью.
Всё впереди....

C-300

ЦитироватьПри содержании Ал более 10 процентов прогары критики были не редкостью.
Значит, частицы алюминия вели себя как абразив... А что же с форсунками?
Цитироватьесли взять смесь гидразин-Al-азотный тетроксид, то при давлении в камере ~150 атм предельный пустотный УИ составит 375 с, а наземный УИ будет ~315 с (соотношение гидразин-Al-АТ ~ 45-20-35%).
Ммммм, как вкусно!

Salo

В 60-х этой темой занимался и Глушко:
ДОКЛАД НА ТЕХНИЧЕСКОМ СОВЕЩАНИИ В КБЭМ ПО НОВЫМ ВЫСОКОКИПЯЩИМ ТОПЛИВAM 17 ИЮНЯ 1969 ГОДА.
ЦитироватьИсследование КБЭМ целесообразности использования суспензий алюминия в гидразине или в растворе НДМГ в гидразине как с AT так и с ПФХ, так же привело к отрицательным результатам. Основная причина — трудности газогенерации для привода турбины двигателя. Создание восстановительного газогенератора исключается, вследствие высокого содержания в горючем алюминия. При работе окислительного газогенератора, расплавленный, частично окислительный алюминий, содержащийся в рабочем теле в количестве 4-5% по весу, представляет опасность для проточной части турбины и для форсунок камеры сгорания, так как будет вызывать эрозию и накапливаться в течение работы двигателя. Если бы эрозия проточной части и засорение даже не имели место, пониженное относительное содержание окислителя в топливе с суспензией (в полтора-два раза) не позволяет обеспечить те же значения давления подачи и в камере сгорания, что при эталонном топливе (АТ+НДМГ), т.е. неизбежно снижение удельного импульса. Таким образом, если бы даже удалось преодолеть трудности, связанные с подачей суспензии алюминия в двигатель (вязкость примерно в 100 раз больше, чем у воды), засорением тракта горючего алюминием, охлаждения камеры и газогенератора суспензией, налипанием суспензии на стенки баков, удалось преодолеть и трудности газогенерации, эрозию и засорение проточной части турбины и форсунок окислителя, например, используя третий компонент для питания окислительного ГГ — горючее без металла, мы не достигли бы выигрыша в удельном импульсе. Лишь увеличение плотности топлива явилось бы наградой за усложнение двигателя и существенное снижение его надежности.

Использование в качестве горючего монометилгидразина (ММГ) вместо раствора НДМГ в гидразине облегчило бы эксплуатацию, т.к. температура замерзания ММГ -52,4°С. Во всех остальных отношениях проблемы остаются те же. Однако еще предстоит проверить взрывобезопасность ММГ при работе в условиях кавитации.

Изложенное позволяет сделать следующее заключение:

1.  Гидразин и некоторые горючие на его основе, как-то: гидразин-50, суспензии металлов, металлоидов и гидридов в гидразине, обладают склонностью к локальным взрывам в трактах горючего в условиях эксплуатации в ЖРД. Чем больше тяга двигателя, тем больше проявляется склонность этих горючих к взрывчатому разложению.

2.  Для воспроизведения взрывчатого разложения гидразина и горючих на его основе под воздействием внешних импульсов в лабораторных условиях, необходимо обеспечить содержание в жидком горючем его паровых пузырьков и пузырьков других газов.

3.  Желательно проведение специализированными организациями (напр., ИХФ АН СССР, ГИПХ МХП) лабораторного исследования стойкости против взрыва гидразина и горючих на его основе, указанных в пункте 1, по методике, учитывающей рекомендацию пункта 2.

4.  Желательно заключение компетентных организаций (ИХФ АН СССР, ГИПХ МХП) о возможности исключения взрывов газообразного гидразина и горючих на его основе в условиях эксплуатации без снижения эффективности этих горючих, например, введением газообразного аммиака и другими средствами.

5.  Следует констатировать нецелесообразность использования в качестве горючего суспензии алюминия в гидразине или в растворе НДМГ в гидразине, поскольку использование такого горючего не приводит к увеличению удельного импульса. Получаемое увеличение плотности топлива не может оправдать неизбежное при этом снижение надежности двигателя. Создание ЖРД, работающего на суспензии алюминия, сопряжено с преодолением таких трудностей, что возможность создания работоспособного двигателя на этом горючем является весьма проблематичной.

6.  Использование пентафторида хлора с эксплуатационно пригодными известными высококипящими горючими не позволяет достичь удельного импульса, заметно большего, чем у эталонного топлива (АТ+НДМГ).

Академик В.П.ГЛУШКО
Арх.№ 2938 (47-55)
"Были когда-то и мы рысаками!!!"

Salo

29.11.1969г.
МИНИСТРУ ОБЩЕГО МАШИНОСТРОЕНИЯ тов. АФАНАСЬЕВУ С.А.
ЦитироватьВ течение ряда лет институты АН СССР, отраслевые институты и конструкторские бюро ведут разработку жидких топлив для ампулизированных ракет, более эффективных, чем ныне широко применяемое (АТ+НДМГ). Работа проводится по плану Научного совета при Президиуме АН СССР по проблеме ЖРТ. Ракетные войска и ВМФ проявляют большой интерес к этим работам, способствуя их постановке и развитию.

Сложность проблемы до последнего времени не позволяла дать конкретные рекомендации по новым топливам. В письме Главкома Ракетных Войск маршала Советского Союза Крылова Н.И. от 24.6.1967г. адресованном АН СССР, MOM, МХП, справедливо указывалось: "Это привело к тому, что в настоящее время опытно-конструкторские работы по проектированию и созданию новых ракет стратегического назначения не предусматривают использование перспективных высокоэффективных ракетных топлив, позволяющих существенно уменьшить габариты и весовые характеристики ракет".

В 1969 г. положение существенно изменилось, так как в итоге большой проделанной работы оказалось возможным фиксировать внимание на двух топливных комбинациях:

1. Окислитель — пентафторид хлора (ПФХ), горючее — 25% раствор аммиака в гидразине (АГ). Это долгохранимое химически стабильное жидкое двухкомпонентное топливо позволяет увеличить удельный импульс на 12-17 сек по сравнению со штатным топливом (АТ+НДМГ) и обладает существенно большей плотностью (1,38 вместо 1,18 ). При том же габарите стратегической ракеты новое топливо позволяет увеличить вес полезного груза примерно в полтора раза.

ПФХ впервые синтезирован в США для ЖРД. Топливная пара ПФХ+АГ предложена КБЭМ. Введение аммиака в гидразин решило три задачи: снизило температуру восстановительного газа в газогенераторе до величины, делающей реальным создание двигателя на этом топливе, исключило взрывное разложение гидразина в условиях крупномасштабной эксплуатации и снизило температуру его замерзания с +1,5°С до -22°С. Недостатком этого топлива является низкая температура кипения под атмосферным давлением, что требует хранения его в ампулизированных баках под давлением до 4 ата. ПФХ более безопасен в эксплуатации, чем фтор, и температура продуктов горения в нем ниже. Методы получения этого топлива разработаны в ГИПХ. По данным ГИПХ производство окислителя может быть организованно на базе существующего Пермского фторного завода, а горючего — на базе существующих заводов НДМГ с относительно небольшими капиталовложениями.

Проработка в КБЭМ показала, что после проведения необходимых экспериментальных работ, уточняющих характеристики этого топлива, может быть создан двигатель с указанными выше характеристиками.

2. Окислитель — AT, горючее — суспензия алюминия в гидразине. Установлено, что не может быть создан работоспособный двигатель на этом двухкомпонентном топливе, поэтому НИИТП предложил использовать, помимо этих двух компонентов, еще третий (НДМГ) для питания газогенератора двигателя. Прирост удельного импульса, по сравнению со штатным топливом (АТ+НДМГ) ожидается в несколько единиц при одинаковых температурах в газогенераторе, а плотность топлива может достигать значительной величины (1,3).

Однако действительная эффективность этого топлива будет меньше рассчитанной только по этим показателям, т.к. применение трехкомпонентного топлива увеличит в полтора раза количество баков на ракете и комплектов автоматики баков и двигателя, что повлечет увеличение веса конструкции, а также снизит ее надежность.

Кроме того, остатки вязкой суспензии на стенках баков, особенно при низких температурах эксплуатации, также ухудшают весовые характеристики ракеты. Не решен вопрос о взрывобезопасности гидразиновой суспензии в условиях крупномасштабной эксплуатации и ряд других вопросов, связанных с использованием суспензии.

Научный совет по проблеме ЖРТ рассмотрел эти топлива и решением №33-69 от 20 октября 1969 г. признал перспективным топливо ПФХ+АГ и необходимым выполнение

КБЭМ в 1970 г. аванпроекта варианта двигателя на этом топливе для комплекса Д9М, разрабатываемого по решению Комиссии по военно-промышленным вопросам, используя результаты дополнительных экспериментальных работ в НИИ и КБ в 1970 г. по изучению свойств компонентов этого топлива. По результатам работы в конце 1970 г. можно будет принять окончательное решение о внедрении нового топлива в ракетную технику.

Этим же решением Научного совета по ЖРТ использование топлива АТ+суспензия алюминия в гидразине в настоящее время не рекомендуется, но признано целесообразным завершить ведущиеся научно-исследовательские работы по этому топливу.

25 ноября с.г. Совет главных конструкторов ракетных двигателей MOM рассмотрел эти вопросы и принял решение о выполнении в 1970 г. научно-исследовательских работ по обоим топливам с выполнением аванпроекта двигателей для Д9М на ПФХ+АГ в КБЭМ и на АТ+суспензия алюминия в гидразине в КБЭМ с последующим окончательным решением.

Конференция в НИИ-4 МО по перспективам развития ЖРД, проходившая 26-28 ноября с.г., поддержала это решение.

В настоящее время подготавливается проект решения Комиссии Президиума Совета Министров СССР по военно-промышленным вопросам о проведении этих работ.

Прошу Вашей поддержки.

Председатель научного совета
по проблеме «Жидкое ракетное топливо», академик ГЛУШКО
Арх.№2583 (174-177)
"Были когда-то и мы рысаками!!!"

Salo

21.08.1972г. ГЛАВНОМУ КОНСТРУКТОРУ КБ «ЮЖНОЕ» тов. УТКИНУ В.Ф.
ЦитироватьПо вопросу: Об эффективности использования на II ступени модификаций 15А15 ЖРД на топливе ВПВ+пентаборан.

В связи с тем, что возможности повышения эффективности боевых ракет при сохранении их объема и при использовании штатных компонентов топлива (АТ+НДМГ) ограничены, весьма актуальным является поиск высокоэффективных компонентов топлива.

При условии преемственности конструктивных и производственно-технологических решений по ракете и стартовому комплексу летно-технические характеристики боевых ракет, в частности модификаций ракеты 15А15, могут быть существенно улучшены за счет применения на верхней ступени двигателей, использующих высокоэффективные топлива.

На основании работ КБЭМ и ряда научно-исследовательских институтов по поиску эффективных высококипящих топлив с учетом летно-технических и эксплуатационных показателей можно сделать вывод, что наиболее перспективным является топливо, состоящее из высококонцентрированной перекиси водорода (с концентрацией 98%) и смеси пентаборана с углеводородным горючим типа РГ-1 или Т-1.

Как уже сообщалось Вам (наш исх. от 30.12.70г.) реальность создания двигателя на топливе ВПВ-96+пентаборан-1 (пентаборан-1 — смесь 94% (по весу) пентаборана с 6% углеводородного горючего типа Т-1) (ПБ-1) подкрепляется многолетними опытными работами ГНИИХТЭОС и КБЭМ.

Проведено на стенде ГНИИХТЭОС более 400 испытаний модельных камер сгорания конструкции КБЭМ и 20 испытаний экспериментального двигателя тягой 10 тонн в Приморском филиале КБЭМ. Результаты проведенных испытаний подтверждают реальность создания двигателя на ВПВ+ПБ-1.

В КБЭМ были проведены предварительные оценки эффективности использования на II ступени ракеты 15А15 ЖРД, работающего на топливе ВПВ+ПБ-1, вместо ЖРД 15Д169, работающего на штатном топливе.

Для сравнения была также проведена оценка эффективности использования на II ступени 15А15 ЖРД, работающих на топливах ВПВ+АлГ (АлГ — тиксотропная суспензия 40% алюминия (по весу) в гидразине) и АТ+АлГ+НДМГ (АлГ+НДМГ — тиксотропная суспензия 40% алюминия (по весу) в гидразине + несимметричный диметилгидразин, используемый для получения генераторного газа).

Учитывая существующие на II ступени ракеты 15А15 ограничения диаметра выходного сечения сопла da =800 мм при оценках параметров ЖРД, работающих на различных топливах, da было принято 800 мм. При этом следует отметить, что эфективность топлива ВПВ+ПБ-1 повышается при увеличении степени расширения продуктов сгорания. Поэтому при оценках были определены параметры ЖРД и дальность полета ракеты 15А15 при использовании на II ступени топлива ВПВ+ПБ-1 и для диаметра выходного сечения сопла больше 800 мм.

Оценка изменения дальности полета ракеты 15А15 при использовании на II ступени двигателей, работающих на различных топливах, вместо двигателя 15Д169 производилась с учетом эквивалентов изменения дальности, сообщенных из КБЮ.

Оценку эффективности применения на II ступени ракеты 15А15 различных топлив целесообразно проводить по величинам прироста полезного груза. Из-за отсутствия в КБЭМ эквивалентов для определения изменения полезного груза ракеты 15А15 сравнение проводилось по приросту дальности стрельбы. По данным НИИТП увеличению дальности на 25% соответствует прирост полезного груза на ~ 40%.

Предварительные основные параметры двигателей II ступени ракеты 15А15 на различных топливах и изменение дальности полета ракеты при использовании этих двигателей вместо ЖРД 15Д169 приведены в таблице 1.



* При определении относительного (в %) прироста дальности стрельбы за номинальную принималась дальность 11000 км.
** Давление Рк=280 ата в камере сгорания двигателя на ВПВ+ПБ-1 достигается при давлении в газогенераторе, одинаковом с давлением в газогенераторе двигателя на штатном топливе при Рк=200 ата, из-за большей работоспособности продуктов разложения ВПВ.

Как следует из данных, приведенных в таблице 1, максимальный прирост дальности стрельбы ракеты 15А15 может быть получен при использовании на II ступени ЖРД, работающей на топливе ВПВ+ПБ-1, вместо ЖРД 15Д169, работающего на штатном топливе. Учитывая ряд преимуществ, обусловленных использованием в качестве окислителя ВПВ: простота схемы по сравнению, например, с двигателем на топливе АТ+АлГ+НДМГ, однокомпонентный газогенератор, отсутствие забросов температуры и неравномерности температурного поля перед турбиной и др., — становится очевидной перспективность ЖРД верхних ступеней на топливе ВПВ+ПБ-1.

Основной проблемой, от решения которой зависит возможность применения ЖРД, работающего на топливе с ВПВ в качестве окислителя, является необходимость повышения стабильности ВПВ в процессе хранения. Уменьшение концентрации ВПВ по времени хранения приводит к уменьшению дальности стрельбы и вызывает необходимость введения специального дыхательного устройства в баках ракеты, т.к. вьщеляющийся из-за разложения ВПВ кислород может приводить при длительном хранении к повышению давления. При годовом падении концентрации Н2О2 0,3%, принимаемом в настоящее время по экспериментальным данным для хранения ВПВ в емкостях из алюминия АД-1 в складских условиях при среднегодовой температуре 15°С, через 10 лет дальность полета ракеты 15А15 при использовании на II ступени топлива ВПВ+ПБ-1 уменьшится на ~ 3,5%.

С целью улучшения свойств ВПВ как компонента ЖРТ рядом организаций при участии КБЭМ ведутся работы по повышению стабильности ВПВ в процессе хранения.

В соответствии с предварительными данными, полученными за последнее время при работе по совместной программе ГИПХ, КБЭМ и ИРЕА (Отчет о НИР «Исследование совместимости и стабилизирующего действия комплексообразующих соединений в контакте с ВПВ», Ленинград-Москва, 1972 г.), в интервале температур 90-100°С при оптимальной концентрации комплексообразующих соединений (нитрилтриметил-фосфоновой кислоты — НТФК и фосфицина), введенных для стабилизации в ВПВ, скорость термического распада 96-97% перекиси водорода снижается в 7-20 раз. Даже, если принять, что введение комплексоноз уменьшит скорость термического распада в 6 раз, т.е. годовая концентрации будет составлять ~0,05% при средней температуре 15°С, то через 10 лет хранения дальность стрельбы уменьшится всего на ~0,6%. Сейчас начаты исследования стабилизирующего действия НТФК и фосфицина при длительном хранении ВПВ в условиях нормальных температур.

Таким образом, имеются реальные возможности уменьшения потерь концентрации ВПВ до величины, не оказывающей практического влияния на эффективность и эксплуатационные характеристики топлива.

Представляют интерес данные, полученные в НИИ-25 по результатам хранения ВПВ-96 с начальной концентрацией ~ 97% в армейских емкостях РА-2МП, изготовленных из АД-1, объемом 2 м3, при температуре +5-+25°С. Результаты измерений концентрации ВПВ в процессе хранения приведены в таблице 2 (в %).



Как видно из таблицы 2, наблюдается падение концентрации ВПВ на 0,3 до 9 месяца хранения и практически сохранение концентрации неизменной в течение следующих 18 месяцев хранения.

Известно, что скорость падения концентрации ВПВ при хранении уменьшается с увеличением отношения объема емкости к контактирующей с ВПВ поверхностью. В связи с тем, что объем бака с ВПВ на II ступени 15А15 будет в несколько раз больше, чем объем армейских емкостей РА-2МП, то ожидаемое уменьшение концентрации ВПВ при хранении в баке ракеты будет меньше.

По стабильности пентаборана проблем нет. Проблема, связанная с высокой токсичностью пентаборана, решается ампулизацией II ступени ракеты 15А15. Продукты сгорания пентаборана с ВПВ нетоксичны.

Что касается возможности использования топлив на основе АлГ и, в частности АТ+АлГ+НДМГ, то помимо того, что при его применении на II ступени ракеты 15А15 получается в ~ 2 раза меньший выигрыш в дальности стрельбы по сравнению со случаем применения ВПВ+ПБ-1, есть еще ряд нерешенных проблем, как по возможности создания стабильной суспензии алюминия в гидразине (учитывая отсутствие положительных данных по длительному хранению АлГ), так и по конструкции двигателя, которые не дают возможности в настоящее время начать полноценную опытно-конструкторскую разработку двигателей. Какие либо данные, позволяющие определить пути и сроки разрешения этих проблем, практически отсутствуют.

В связи с вышеизложенным КБЭМ считает, что на II ступени модификаций ракеты 15А15 целесообразно использовать ЖРД, работающие на топливе ВПВ+ПБ-1. И это наиболее реальный путь повышения эффективности следующего поколения боевых ракет.

КБЭМ готово принять участие в проработках и предоставить Вам все необходимые данные.

Главный конструктор  ГЛУШКО
Арх.№ 3146 (174-179)
"Были когда-то и мы рысаками!!!"

C-300

Salo, спасибо за интересные материалы.
ЦитироватьНаучный совет по проблеме ЖРТ рассмотрел эти топлива и решением №33-69 от 20 октября 1969 г. признал перспективным топливо ПФХ+АГ и необходимым выполнение КБЭМ в 1970 г. аванпроекта варианта двигателя на этом топливе для комплекса Д9М, разрабатываемого по решению Комиссии по военно-промышленным вопросам, используя результаты дополнительных экспериментальных работ в НИИ и КБ в 1970 г. по изучению свойств компонентов этого топлива. По результатам работы в конце 1970 г. можно будет принять окончательное решение о внедрении нового топлива в ракетную технику.

Этим же решением Научного совета по ЖРТ использование топлива АТ+суспензия алюминия в гидразине в настоящее время не рекомендуется, но признано целесообразным завершить ведущиеся научно-исследовательские работы по этому топливу.
Однако в книге "СКБ-385 КБМ ГРЦ" топливо пентафторид хлора-АГ-25 не упоминается вовсе, наоборот, неоднократно упоминаются работы по созданию комплексов на основе люминал-А+АТ.

Salo

Эти работы выполнял уже не Глушко в Энергомаше, а Богомолов в КБХМ.
"Были когда-то и мы рысаками!!!"

hecata

А до какого состояния дошли двигатели на пентафториде хлора? Есть какие-то книжки про это?

Salo

"Были когда-то и мы рысаками!!!"

Salo

http://www.dissercat.com/content/razrabotka-vysokoeffektivnykh-kislorodnykh-busternykh-tna-dlya-zhrd-novogo-pokoleniya
Цитировать60. Радовский В.П., Трофимов В.Ф., Ромасенко E.H. и др.Аванпроект жидкостных ракетных двигателей 4Д75М и 4Д76М, Том 1, книга 2, НПО Энергомаш, 1970г.

61. Радовский В.П., Трофимов В.Ф., Ромасенко E.H. и др. Аванпроект жидкостных ракетных двигателей 4Д75М и 4Д76М на компонентах топлива ВПВ-1-АлГ. Том 1, книга 2, НПО Энергомаш, 1971г.
"Были когда-то и мы рысаками!!!"