Psyche – Falcon Heavy-0? (B10??.?, B10??.?, B10??.?) – Kennedy LC-39A – 10.10.2023 ? UTC

Автор instml, 04.01.2017 22:53:37

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.


Psyche - миссия NASA к крупнейшему металлическому астероиду
- название темы до установки параметров запуска - zandr

January 04, 2017

NASA Selects Two Missions to Explore the Early Solar System
NASA has selected two missions that have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 million years after the birth of our sun. The missions, known as Lucy and Psyche, were chosen fr om five finalists and will proceed to mission formulation, with the goal of launching in 2021 and 2023, respectively.

ЦитатаНАСА организует две миссии для изучения астероидов и солнечной системы
07:41 05.01.2017
МОСКВА, 5 янв — РИА Новости. США намерены организовать миссию по изучению астероидов для проведения детального анализа солнечной системы, сообщает НАСА.
 "НАСА выбрала две миссии, которые потенциально могут приоткрыть завесу одной из наиболее ранних эр истории нашей солнечной системы — менее чем 10 миллионов лет после рождения нашего Солнца", — говорится в сообщении.
Космический робот "Люси" (Lucy) планируется запустить в октябре 2021 года. Ожидается, что он достигнет первой цели, главного пояса астероидов, к 2025 году. С 2027 по 2033 "Люси" изучит шесть Троянских астероидов Юпитера.
Вторая миссия, названная "Психеей" (Psyche), началом которой может стать 2023 год, изучит одно из наиболее интригующих явлений главного пояса — гигантский астероид, известный как "16 Психея".
"Были когда-то и мы рысаками!!!"


ВИКИ отреагировала четко
ЦитатаВ честь астероида назван проект NASA «Psyche» (en:Psyche (spacecraft)), который должен изучить его магнитные свойства[17]. АМС должна быть запущена в октябре 2023 г. и после гравитационных манёвров около Земли в 2024 году и около Марса в 2025 году прибыть к астероиду в 2030 году[18].
Интересно, как часто пусковое окно открывается
Я зуб даю за то что в первом пуске Ангары с Восточного полетит ГВМ Пингвина. © Старый
Если болит сердце за народные деньги - можно пойти в депутаты. © Neru - Старому


Фото астеройдов уже не впечатляют. 
Лет 20 назад это было экзотикой. 
А  сейчас - каменюка каменюкой  :cry:

Я за нырок под облака Титана.


Эти новые миссии к астеройдам на ЖРД или на ЭРД как Dawn??


Lucy PI Hal Levison is a scientist at the Southwest Research Institute in Boulder, Colorado. SwRI will lead the overall science investigation. NASA's Goddard Space Flight Center is providing mission management, systems engineering, and safety and mission assurance, and the spacecraft will be built by Lockheed Martin.

Psyche's science team is located at Arizona State University; as is PI Lindy Elkins-Tanton. NASA's Jet Propulsion Laboratory in Pasadena, California manages the Psyche mission. The spacecraft structure will be built by Space Systems / Loral.

When practical, NASA likes to use flight-proven hardware—often referred to as heritage technology. There are multiple benefits; it's usually cheaper if you don't have to develop new components from scratch, and it's always good to know that something has already flown in space successfully.

Lucy uses enhanced versions of science instruments that flew on the New Horizons and OSIRIS-REx missions, and some of Lucy's team members also come from those programs.

The Psyche spacecraft itself is very Dawn-like in appearance, and uses solar-electric propulsion—a technology vetted thoroughly during Dawn's ten-year mission.


Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан


ЦитатаЧебурашка пишет:
Фото астеройдов уже не впечатляют.
Лет 20 назад это было экзотикой.
А сейчас - каменюка каменюкой :cry:  

Я за нырок под облака Титана.
Психея вроде не "каменюка" а "железяка", отсюда и интерес
Не надо греть кислород!
146 пользователям это нравится
одному не нравится


The spacecraft's instrument payload will include magnetometers, multispectral imagers, a gamma ray and neutron spectrometer, and a radio-science experiment.

The multispectral imager, which will be led by an ASU science team, will provide high-resolution images using filters to discriminate between Psyche's metallic and silicate constituents. It consists of a pair of identical cameras designed to acquire geologic, compositional and topographic data.

The gamma ray and neutron spectrometer will detect, measure and map Psyche's elemental composition. The instrument is mounted on a 7-foot (2-meter) boom to distance the sensors from background radiation created by energetic particles interacting with the spacecraft and to provide an unobstructed field of view. The science team for this instrument is based at the Applied Physics Laboratory at Johns Hopkins University.

The magnetometer, which is led by scientists at MIT and UCLA, is designed to detect and measure the remnant magnetic field of the asteroid. It's composed of two identical high-sensitivity magnetic field sensors located at the middle and outer end of the boom.

The Psyche spacecraft will also use an X-band radio telecommunications system, led by scientists at MIT and NASA's Jet Propulsion Laboratory. This instrument will measure Psyche's gravity field and, when combined with topography derived from onboard imagery, will provide information on the interior structure of the asteroid.



Ещё бы посадочный модуль со сверлом отправить.

Характеристическая скорость для посадки с последней орбиты всего лишь 150 м/c


Надо его к Земле отбуксировать васемирами... В либрац точку. Запаса самородного железа хватит металлургии навсегда. Проект таковой в дальней перспективе окупится Особливо коли там и никель...

А если серьезно, предлагаю метод надежной посадки зонда. Всем сразу ясно, какой? Электромагнит на борту. 

Жизнь - это падение в пропасть неизвестной глубины и заполненную туманом.


Jeff Foust ‏@jeff_foust
Elkins-Tanton notes Psyche mission plans to carry optical communications experiment payload; test it out at 3 AU.


ЦитатаЧебурашка пишет:

Я за нырок под облака Титана.
Было уже (Гейгенс).

Нужно разбираться, есть ли жизнь на кометах, в океанах Европы и Энцелада, на Марсе, ну и в озере Восток. Больше ничего реально интригующего в солнечной системе не осталось.

Но это в бюджет Дискавери никак не влезает.


Цитатаsol пишет:
Надо его к Земле отбуксировать васемирами... В либрац точку. Запаса самородного железа хватит металлургии навсегда. Проект таковой в дальней перспективе окупится Особливо коли там и никель...
Из Пояса далековато. Для начала можно и поближе разрабатывать (без васимиров). Например, вот этот:
(436724) 2011 UW158 — небольшой околоземный астероид из группы аполлонов[3], который был открыт с помощью системы Pan-STARRS 1 в обсерватории Халеакала. Астероид пока не получил собственного имени.
Повышенный интерес к данному астероиду обусловлен, в первую очередь, его тесным сближением с Землёй в июле 2015 года, что позволило подробно его изучить, а, во вторых, его составом, в котором оказалось довольно много платины и других ценных металлов, по подсчётам некоторых учёных, на сумму от 300 млрд до 5,4 триллиона долларов[4]."
"Мы не осмеливаемся на многие вещи, потому что они тяжелые, но тяжелые, потому что мы не осмеливаемся сделать их." Сенека
«Индия может осуществить подготовку и запуск миссии к Венере в очень короткий срок, поскольку у Индии есть для этого потенциал», — глава ISRO Шридхара Паникер Сомнатха.


К нему интереснее пилотируемую экспедицию направить.
Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан


FEBRUARY 14, 2017
Lasers Could Give Space Research its 'Broadband' Moment

Thought your Internet speeds were slow? Try being a space scientist for a day.

The vast distances involved will throttle data rates to a trickle. You're lucky if a spacecraft can send more than a few megabits per second (Mbps) -- a pittance even by dial-up standards.

But we might be on the cusp of a change. Just as going fr om dial-up to broadband revolutionized the Internet and made high-resolution photos and streaming video a given, NASA may be ready to undergo a similar "broadband" moment in coming years.

The key to that data revolution will be lasers. For almost 60 years, the standard way to "talk" to spacecraft has been with radio waves, which are ideal for long distances. But optical communications, in which data is beamed over laser light, can increase that rate by as much as 10 to 100 times.

High data rates will allow researchers to gather science faster, study sudden events like dust storms or spacecraft landings, and even send video from the surface of other planets. The pinpoint precision of laser communications is also well suited to the goals of NASA mission planners, who are looking to send spacecraft farther out into the solar system.

"Laser technology is ideal for boosting downlink communications from deep space," said Abi Biswas, the supervisor of the Optical Communications Systems group at NASA's Jet Propulsion Laboratory, Pasadena, California. "It will eventually allow for applications like giving each astronaut his or her own video feed, or sending back higher-resolution, data-rich images faster."

NASA's space lasers
Past and future NASA projects involving laser communications:

Name: Lunar Laser Communications Demonstration (LLCD)
Led by: Goddard Space Flight Center
Year: 2013
Objective: Was NASA's first system for two-way communication using a laser instead of radio waves. An error-free uplink data rate of 20 Mbps transmitted from a primary ground station in New Mexico to NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE), a spacecraft orbiting the moon. Demonstrated an error-free downlink rate of 622 Mbps -- the equivalent of streaming 30 channels of HDTV from the moon.

Name: Optical Payload for Lasercomm Science (OPALS)
Led by: JPL
Year: 2014
Objective: Testing laser communications from the International Space Station. Beamed a video file every 3.5 seconds for a total of 148 seconds. With traditional downlink methods, sending the 175-megabit video just once would have taken 10 minutes.

Name: Laser Communications Relay Demonstration (LCRD)
Led by: Goddard Space Flight Center
Year: 2019
Objective: Will relay laser signals between telescopes at Table Mountain, California, and in Hawaii through a relay satellite in geostationary orbit during a two-year demonstration period. The system is designed to operate for up to five years to prove the everyday reliability of laser communications for future NASA missions.

Name: Deep Space Optical Communications (DSOC)
Led by JPL
Year: 2023
Objective: To test laser communications from deep space. An upcoming NASA Discovery mission called Psyche will fly to a metallic asteroid starting in 2023. Psyche is planned to host a laser device called DSOC, which would beam data down to a telescope at Palomar Mountain Observatory in California.

Science at the speed of light

Both radio and lasers travel at the speed of light, but lasers travel in a higher-frequency bandwidth. That allows them to carry more information than radio waves, which is crucial when you're collecting massive amounts of data and have narrow windows of time to send it back to Earth.

A good example is NASA's Mars Reconnaissance Orbiter, which sends science data at a blazing maximum of 6 Mbps. Biswas estimated that if the orbiter used laser comms technology with a mass and power usage comparable to its current radio system, it could probably increase the maximum data rate to 250 Mbps.

That might still sound stunningly slow to Internet users. But on Earth, data is sent over far shorter distances and through infrastructure that doesn't exist yet in space, so it travels even faster.

Increasing data rates would allow scientists to spend more of their time on analysis than on spacecraft operations.

"It's perfect when things are happening fast and you want a dense data set," said Dave Pieri, a JPL research scientist and volcanologist. Pieri has led past research on how laser comms could be used to study volcanic eruptions and wildfires in near real-time. "If you have a volcano exploding in front of you, you want to assess its activity level and propensity to keep erupting. The sooner you get and process that data, the better."

That same technology could apply to erupting cryovolcanoes on icy moons around other planets. Pieri noted that compared to radio transmission of events like these, "laser comms would up the ante by an order of magnitude."

Clouding the future of lasers

That's not to say the technology is perfect for every scenario. Lasers are subject to more interference from clouds and other atmospheric conditions than radio waves; pointing and timing are also challenges.

Lasers also require ground infrastructure that doesn't yet exist. NASA's Deep Space Network, a system of antenna arrays located across the globe, is based entirely on radio technology. Ground stations would have to be developed that could receive lasers in locations wh ere skies are reliably clear.

Radio technology won't be going away. It works in rain or shine, and will continue to be effective for low-data uses like providing commands to spacecraft.

Next steps

Two upcoming NASA missions will help engineers understand the technical challenges involved in conducting laser communications in space. What they'll learn will advance lasers toward becoming a common form of space communication in the future.

The Laser Communications Relay Demonstration (LCRD), led by NASA's Goddard Space Flight Center in Greenbelt, Maryland, is due to launch in 2019. LCRD will demonstrate the relay of data using laser and radio frequency technology. It will beam laser signals almost 25,000 miles (40,000 kilometers) from a ground station in California to a satellite in geostationary orbit, then relay that signal to another ground station. JPL is developing one of the ground stations at Table Mountain in southern California. Testing laser communications in geostationary orbit, as LCRD will do, has practical applications for data transfer on Earth.

Deep Space Optical Communications (DSOC), led by JPL, is scheduled to launch in 2023 as part of an upcoming NASA Discovery mission. That mission, Psyche, will fly to a metallic asteroid, testing laser comms from a much greater distance than LCRD.

The Psyche mission has been planned to carry the DSOC laser device onboard the spacecraft. Effectively, the DSOC mission will try to hit a bullseye using a deep space laser -- and because of the planet's rotation, it will hit a moving target, as well.


ЦитатаПлейшнер пишет:
ЦитатаЧебурашка пишет:
Фото астеройдов уже не впечатляют.
Лет 20 назад это было экзотикой.
 А сейчас - каменюка каменюкой  :cry:  

Я за нырок под облака Титана.
Психея вроде не "каменюка" а "железяка", отсюда и интерес

Когда жизнь экзаменует - первыми сдают нервы.