NASA Shuttle-derived Sidemount Heavy Launch Vehicle Concept

Автор andybe29, 24.06.2009 05:43:29

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

Игорь Суслов

ЦитироватьИзначально он был рекавербл.
Дим, а как?  :shock:
Спасибо не говорю, - уплачено...

Дмитрий В.

Цитировать
ЦитироватьУ Шаттл-С был многоразовым двигательный блок.
А ты уверен в этом? ;)
Конечно, я ссылаюсь на википедию - не лучший ресурс и аргумент в споре, но:
"The proposal involved using, at various times, existing spaceframes, Space Shuttle Main Engines that had reached maintenance lifetime limits, and spare navigation computers" - "... использование достигших предела жизненного цикла SSME..."
http://en.wikipedia.org/wiki/Shuttle-C

Возможно, правда, что существовали версии Shuttle-C, в других конфигурациях, где двигательный блок спасался...

Да, в двигательная сборка SSME и ДОМ должна была возвращаться нга землю в капсуле. Возможно, этот вариант не был единственным, но рассматривался точно и скорее всего, был основным.
Lingua latina non penis canina
StarShip - аналоговнет!

Дмитрий Виницкий

Блок ДУ, в смысле.

Shuttle C.
Shuttle C
Credit - © Mark Wade
Orbital launch vehicle. Status: Study 1989.

NASA Marshall design for a cargo version of the shuttle system. The shuttle orbiter would be replaced by an unmanned recoverable main engine pod. The same concept was studied earlier as the Interim Heavy Lift Launch Vehicle (IHLLV) and as the Class I Shuttle Derived Vehicle (SDV). The Phase I two-SSME configuration would have a payload of 45,000 kg to low earth orbit. Design carried to an advanced phase in 1987-1990, but then abandoned when it was found the concept had no cost advantage over existing expenable launch vehicles.

After the Challenger accident, NASA believed there would be a need for a 14 per year shuttle launch rate. But such a rate would be unachievable given the existing orbiter flow times and the reduced number of orbiters available. The Shuttle-C (Cargo) would allow such a rate to be achieved. After Challenger, NASA studied development of a new unmanned Heavy Lift Launch Vehicle with the Air Force. In the discussions NASA insisted that any HLLV be a Shuttle Derived Vehicle. This led to the USAF pulling out of the shuttle program, and developing the Titan IV for the short term, and beginning a study of a new ALS Advanced Launch System for the long term. The USAF did not believe low-cost access to space was possible using man-rated systems. In the aftermath of the kerfuffle a Joint NASA-DoD-USAF steering group was set up to monitor development of the ALS and Shuttle-C. In August 1987 NASA Houston officially began Shuttle-C studies through assignment of a task team. In November 1987 nine-month study contracts were let to Martin-Marietta, United Space Boosters Inc, and Rockwell for definition of a Shuttle-Derived Vehicle. Phase I of the studies was to determine the optimum vehicle configuration, and Phase II was to completely define the selected vehicle. Concept studied included:
A throwaway orbiter with no wings, crew cabin, or avionics, and only two engines. This idea was abandoned early.
In-line versions with one to three SSME engines at the base of the external tank, and the payload on top. But this was found to require extensive facility modifications as well as redesign of the external tank
Class I Shuttle Derived Vehicle as had been proposed in studies of the 1970's.

The Class I SDV was again found to be the best solution. It was estimated it could deliver payload to orbit at a cost of $4400/kg, as opposed to $1720 for the Delta II, $ 1800 for the Titan IV, or $ 3400 for the shuttle. As a result a Request for Proposal was issued for the Expendable Cargo Element - a payload fairing for the Shuttle-C to be mounted on the side of the external tank. This could accommodate 4.6 m x 22 m payloads weighing up to 47,000 kg and would be delivered into a 407 km / 28.5 deg orbit for docking with Space Station Freedom. The system could also deliver 52,000 kg to a 300 km / 28.5 deg orbit. The CE (Cargo Element) was equipped with 2 Space Shuttle Main Engines, and 2 Orbital Maneuvering System pods. The payload would either be released attached to the planned Orbital Maneuvering Vehicle transfer stage, or an OMV already in orbit would dock with the CE and take the payload away; or the OMS itself would be used to put the payload in its final orbit, release it, then retrofire to return the CE to earth.

In February 1988 the industrial team Rockwell - Martin Marietta - Boeing - Teledyne - Intermetrics - United Space Boosters was awarded follow-on18-month study contract NAS8-37144. During the course of the study NASA canceled the OMV, and the design had to be modified to handle in-orbit delivery and release of the payloads. The final report of the study envisioned two generations of Shuttle-C's. Generation 1 would be an expendable CE with a 4.6 m x 24.7 m cargo bay, using two SSME's, and capable of deliverying 45,000 kg to orbit. The CE would have an empty weight of 31,750 kg, using the shuttle thrust structure, and be fitted with shuttle engines and computers at the end of their useful lives. Three to four flights per year could be accomplished using the expendable approach, while NASA believed it had a requirement for 10 to 12 per year. Generation 2 would have a new-design recoverable CE, powered by 3 SSME's, and capable of delivering 77,000 kg in a 7.3 m x 29.3 m volume.

In early 1989 the study contract was extended by one year, including consideration of use of the Centaur G-Prime from the Titan IV as an upper stage. It was determined that the MPTA-098 structural article built in the 1970's for the SSME development program could be used as the Shuttle-C prototype. At the end of the study NASA decided that the development cost for Shuttle-C would be $ 1.8 billion. The Office for Technology Assessment estimated the cost as only $985 million, a rare case indeed where NASA made a high-ball estimate. Cost per launch would be $424 million for the Generation 1 design, or $9350 per kg. 14 Space Shuttles and 10 Shuttle-C's could be launched per year using existing Kennedy Space Center facilities. However such a rate would quickly exhaust the supply of surplus SSME engines. Therefore new-build engines would have to be purchased at a cost of $38 million each, or a total of $500 million per year. When this cost was taken into consideration, Shuttle-C was more expensive than the USAF Titan IV - therefore, NASA concluded, there was no reason to develop it. The decision was taken in 1990 to cancel Shuttle-C.

LEO Payload: 77,000 kg (169,000 lb). to: 400 km Orbit. at: 28.00 degrees. Liftoff Thrust: 20,299.200 kN (4,563,442 lbf). Total Mass: 1,966,675 kg (4,335,776 lb). Core Diameter: 8.70 m (28.50 ft). Total Length: 56.00 m (183.00 ft). Flyaway Unit Cost $: 84.970 million. in: 1985 unit dollars.

http://www.astronautix.com/lvs/shuttle.htm

кстати:



не видел с этого ракурса раньше.
+35797748398

Игорь Суслов

Любопытно было бы увидеть спасательную капсулу для SSME...
Спасибо не говорю, - уплачено...

ronatu

Когда жизнь экзаменует - первыми сдают нервы.

Dave Bowman

ЦитироватьЛюбопытно было бы увидеть спасательную капсулу для SSME...
У В. Мишина есть. Завтра буду перебирать свои бумажки, найду - покажу

Lanista

Хех, Фалкон дороже Атласа.

Dave Bowman

Кстати, а почему если ЖРД одноразовые, их не заменят RS-68? Ведь SSME намного дороже? Или не оснастить данную ракету возвращаемым контейнером для SSME?

hecata

ЦитироватьКстати, а почему если ЖРД одноразовые, их не заменят RS-68? Ведь SSME намного дороже? Или не оснастить данную ракету возвращаемым контейнером для SSME?

Наверное потому что у RS-68 тяга заметное больше, а УИ заметно меньше.

Dave Bowman

Двигатель РС-68 был разработан в лаборатории Propulsion and Power компании Рокетдайн, расположенной в Лос-Анджелесе, Калифорния для первой ступени одноразовой ракеты-носителя Дельта-4. В камеру сгорания подается жидкий водород и кислород под давлением 104,5 ат (10,25 MPa, уровень тяги 102 %), массовое соотношение смешивания топлива и окислителя 1:6.

При уровне тяги 102 % двигатель производит 343,6 тс (3,37 МН) в вакууме и 300,7 тс (2,95 МН) на уровне моря. Высота двигателя 2,4 м. Масса 6600 кг дает соотношение тяги к массе 51,2; удельный импульс двигателя составляет 410 c в вакууме и 365 c на уровне моря. Управление вектором тяги осуществляется гидравлической системой, диапазон дросселирования от 57 до 102 %.

25 сентября 2008 года модифицированный RS-68A успешно прошёл первые огневые испытания. RS-68A — усовершенствованная версия RS-68 с изменениями, которые должны обеспечить увеличенный удельный импульс и тягу выше 317,5 тс (3114 кН) на уровне моря. Сертификация двигателя запланирована в 2010 году, с возможностью первого использования в 2011 году.[2]

RS-24 он же SSME
Масса:   3177 кг
Высота:   4240 мм
Диаметр:   2400 мм
Рабочие характеристики
Тяга:   222,6 тс в вакууме (104,5 % тяги)
181,4 тс на уровне моря
Удельный импульс:
452,5 c в вакууме
363 c на уровне моря
Время работы:   520 c
Давление в камере сгорания:   18,9 MPa (192,7 ат)

Степень расширения:   77,50
Тяговооружённость:   73,12


Если 2 модернизированые RS-68A поставить вместо 3 SSME?

Dave Bowman

Кстати, у "Юритера" 2 RS-68 предусмортрены. А бак фактически тот же, только изменен под тандемную компоновку