Носители легкого класса: технический облик

Автор Дмитрий В., 29.03.2008 17:45:51

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

ZOOR

ЦитироватьДмитрий В. пишет:
Хмммм. Если здесь правда, то должно быть все Ок со штатной 2-й ступенью.
Штатной ступенью ЧЕГО? И на плакатике не вижу графика зависимости Норб/Мпг

Все ОК так, что делают 2 ступень которая "на основе УРМ-2" и как из кубиков и т.д. и даже ваяют АМ.
Вам это ни о чем не говорит?

Дмитрий В. , после Ваших оценок Мпг А-5 тяжело что-то объяснить ............
Я зуб даю за то что в первом пуске Ангары с Восточного полетит ГВМ Пингвина. © Старый
Если болит сердце за народные деньги - можно пойти в депутаты. © Neru - Старому

Дмитрий В.

#1901
ЦитироватьZOOR пишет:
ЦитироватьДмитрий В. пишет:
Хмммм. Если здесь правда, то должно быть все Ок со штатной 2-й ступенью.
Штатной ступенью ЧЕГО ? И на плакатике не вижу графика зависимости Норб/Мпг

Все ОК так, что делают 2 ступень которая "на основе УРМ-2" и как из кубиков и т.д. и даже ваяют АМ.
Вам это ни о чем не говорит?

 Дмитрий В. , после Ваших оценок Мпг А-5 тяжело что-то объяснить ............
Речь, конечно, о стандартной НОО 200х200 км. Понятно, что у ЛЮБОГО керосинового двухступа (без РБ и повторного включения второй ступени) зависимость "иасса ПГ-высота орбиты) очень быстро деградирует (Н=700...800 км и аля-улю, Мпг обнуляется). То что ваяют АМ - это из этой оперы.

Мои оценки для А5 (23,8...24,4 т на НОО 200х200х63 град) опираются на известные массовые параметры блоков (в т.ч. и из этой картинки) и параметры РД-191.
Поэтому Вы уж попробуйте объяснить.
Lingua latina non penis canina
StarShip - аналоговнет!

ZOOR

ЦитироватьДмитрий В. пишет:
Речь, конечно, о стандартной НОО 200х200 км.
Я еще раз говорю - рассматривайте практически значимые орбиты - ССО 800 или 82,5х1500
Я зуб даю за то что в первом пуске Ангары с Восточного полетит ГВМ Пингвина. © Старый
Если болит сердце за народные деньги - можно пойти в депутаты. © Neru - Старому

Дмитрий В.

ЦитироватьZOOR пишет:
ЦитироватьДмитрий В. пишет:
Речь, конечно, о стандартной НОО 200х200 км.
Я еще раз говорю - рассматривайте практически значимые орбиты - ССО 800 или 82,5х1500
Это бесполезно для двухступов, и я говорил, почкму. Для Ангары ситуация может быть немного лучше (для 3-ступов Мпг медленнее деградирует с ростом Норб, по моим прикидкам, Протон-М способен закинуть 5 т на круговую высотой 1000 км). Но в любом случае, для орбит выше 400...500 км (для 2-хступов) желательно иметь либо повторное включение второй ступени, либо БДВ, а еще выше - РБ.
Lingua latina non penis canina
StarShip - аналоговнет!

ZOOR

ЦитироватьДмитрий В. пишет:
Для Ангары ситуация может быть немного лучше (для 3-ступов Мпг медленнее деградирует с ростом Норб
Где Вы видите трехступ

ЦитироватьДмитрий В. пишет:
Но в любом случае, для орбит выше 400...500 км (для 2-хступов) желательно иметь либо повторное включение второй ступени, либо БДВ, а еще выше - РБ.
Откровение, извиняюсь  :oops:
Я зуб даю за то что в первом пуске Ангары с Восточного полетит ГВМ Пингвина. © Старый
Если болит сердце за народные деньги - можно пойти в депутаты. © Neru - Старому

Дмитрий В.

ЦитироватьZOOR пишет:
ЦитироватьДмитрий В. пишет:
Для Ангары ситуация может быть немного лучше (для 3-ступов Мпг медленнее деградирует с ростом Норб
Где Вы видите трехступ
Ангара-А5.
Lingua latina non penis canina
StarShip - аналоговнет!

ZOOR

ЦитироватьДмитрий В. пишет:
Ангара-А5.
А мы в какой теме разговариваем?
ЦитироватьНосители легкого класса: технический облик
Я зуб даю за то что в первом пуске Ангары с Восточного полетит ГВМ Пингвина. © Старый
Если болит сердце за народные деньги - можно пойти в депутаты. © Neru - Старому

Юрий Морозов

ЦитироватьZOOR пишет:
ЦитироватьДмитрий В. пишет:
Речь, конечно, о стандартной НОО 200х200 км.
Я еще раз говорю - рассматривайте практически значимые орбиты - ССО 800 или 82,5х1500
Ого, я тут уже рассматриваю, и кое что сумею предложить.  Но нужны конкретные заказчики. Для 82,5*1500 я пологаю нужно 5 пусков в год? ;)
Килограмм 300 выведем. по 3 миллиона бакинских вместе с пуском.

Юрий Морозов

ЦитироватьДмитрий В. пишет:
ЦитироватьZOOR пишет:
ЦитироватьДмитрий В. пишет:
Речь, конечно, о стандартной НОО 200х200 км.
Я еще раз говорю - рассматривайте практически значимые орбиты - ССО 800 или 82,5х1500
Это бесполезно для двухступов, и я говорил, почкму. Для Ангары ситуация может быть немного лучше (для 3-ступов Мпг медленнее деградирует с ростом Норб, по моим прикидкам, Протон-М способен закинуть 5 т на круговую высотой 1000 км). Но в любом случае, для орбит выше 400...500 км (для 2-хступов) желательно иметь либо повторное включение второй ступени, либо БДВ, а еще выше - РБ.
Ну я так понимаю Фэлкон-9 деградирует быстрее всех...а повторное включение второй, это вообще то Норма для современных ракет.

Salo

http://www.interorbital.com/interorbital_06222015_020.htm
ЦитироватьMOJAVE-10.02.2016---Interorbital Systems, in collaboration with Ed Belbruno, a world-renowned aerodynamicist and interplanetary trajectory analyst/designer, is developing a lunar impact mission that will be attempted in 2017. Dr. Belbruno, founder and CEO of Innovative Orbital Design, Inc., is calculating a lunar trajectory that has a minimum reaction-mass requirement. The payload will be based Interorbital's TubeSat and CubeSat technology.
       
       The mission, designated the "Lunar Bullet," will feature a lunar-direct trajectory ending with a hard impact on the Moon's surface. During the Lunar approach phase of the mission, high-definition video will be transmitted continuously to Earth until impact. The project will be similar to the NASA 'Ranger' mission from the 1960s. Not only will the Lunar Bullet be the first payload launched by a commercial rocket company to the surface of the moon, the IOS/IOD mission will also serve as a precursor to Interorbital's launch of Team SYNERGY MOON's Google Lunar X PRIZE attempt slated for the end of 2017. The Lunar Bullet Mission will verify IOS' launch and interplanetary navigation technology.
       
       The launch vehicle for the "Lunar Bullet" mission will be the IOS NEPTUNE 3 (N3) rocket, which will include an updated version of its Common Propulsion Module, the CPM 2.0. Each CPM 2.0 is assembled from an array of four carbon filament-wound tanks, a single gimballed engine, a valve and controller unit, and a fairing. The CPM 2.0's four-tank array includes three propellant tanks and a single pressurant tank to provide regulated pressurant flow during rocket engine operation. CPM 2.0 has been shown to have substantially improved engine performance. The N3 is a four-stage launch vehicle constructed by bundling three CPM 2.0s. The third- and fourth-stages are composed of a series of IOS Minerva I solid rocket motors. The N3, which has a payload capacity of 23-kgs to 310-km, and the N5, which has a payload capacity of 60-kg to 310-km, will be used for the upcoming launches of IOS' 135 manifested satellites.
       
       The NEPTUNE guidance-and-control hardware and software has also reached a state of readiness for the upcoming guidance test launches.
       
       In more Moon-flight news, Interorbital has completed the design of its Google Lunar XPRIZE (GLXP) launch vehicle for Team SYNERGY MOON. It will be assembled from eight CPM 2.0s and will include enhanced-performance rocket engines that will deliver 20,000 pounds (88,960-newtons) of thrust each. The launch vehicle has been designated the N8 LUNA. It is capable of launching 500-kg (1,102-lb) into LEO or a 12-kg (26.5-lb) payload to the surface of the Moon. In late August, the XPRIZE verified Team SYNERGY MOON's launch agreement with this statement:
       
       "Today, XPRIZE officially has officially verified Team SYNERGY MOON's launch agreement as part of the $30M Google Lunar XPRIZE, a global competition for privately-funded teams to land an unmanned spacecraft on the surface of the moon by December 31, 2017. The SYNERGY MOON mission will use a NEPTUNE 8 rocket, built and launched by Interorbital Systems, to carry a lunar lander and at least one rover to the surface of the moon, launching from an open-ocean location off the California coast during the second half of 2017."
       
       IOS is nearing the completion of development and testing of its innovative carbon-composite filament-winding machine, developed in-house. It is capable of winding tanks with a maximum diameter of 30 inches (76 cm) and a maximum length of 30 feet (9 meters). The super-strong and ultra-lightweight propellant and pressurant tanks this winding system is capable of mass-producing, in conjunction with Interorbital's use of high-density storable propellants, will allow the pressure-fed NEPTUNE System Launch Vehicles to efficiently and affordably launch payloads into Earth orbit and beyond at the lowest cost in the world.
        
"Были когда-то и мы рысаками!!!"

Salo

#1910
http://www.satnews.com/story.php?number=60112970
ЦитироватьSatnews Daily
October 5th, 2016
MOU Between KSF & IOS For Smallsat Shots

 
On October 3rd, KSF Space Foundation signed a Memorandum of Understanding (MOU) with Interorbital Systems (IOS), wherein the latter firm will identify launch opportunities as well as provide associated pre-launch support for KSF missions.
KSF Space Foundation has signed a memorandum of understanding (MOU) with Interorbital Systems (IOS) in California, this October the 3rd 2016. Under the agreement, Interorbital Systems will identify launch opportunities and provide associated pre-launch support to KSF Space Foundation.
According to IOS, by mid-2017/early 2018, the firm will initiate launch services for smallsats to a circular, polar orbit at 310 km altitude. Their current manifest numbers 135 smallsats awaiting launch. Interorbital Systems has developed a simple, robust rocket technology that will enable that firm to be the lowest-cost launch provider in the commercial space industry. Interorbital Systems is currently engaged in building a Moon rocket, NEPTUNE 8 LUNA (N8 ), for the Google Lunar X Prize Team SYNERGY MOON and other NEPTUNE rocket-series variants, such as the N3, and N5 for commercial satellite launches.
The KSF Space was initially founded to enable cost-effective access to LEO with zero-environmental impact flying solutions. The foundation offers access to near-space and LEO for research and scientific experiments in many fields, such as Earth or Space Observation, biological testing, satellite positioning detection, earth magnetic field measurement, radio transmit, atmosphere science and technology experiment. The foundation encourage universities to develop R&D missions using small sats as these tiny spacecraft have become one of the most important elements in developing future scientific space missions.
KSF Space also recently announced the creation of the world's first Nano-satellite Engineering Professional Certification "NEP Certificate" The NEP Certification pathway will validate the training and experience of aerospace engineers and experts and will be recognized by major space companies, organizations, foundations and agencies. Some of the industry partners will work with KSF Space to review the content of the course material and accredit the certificate by recognizing NEP Certification as world's first and only smallsat specialization and training credential.
"Были когда-то и мы рысаками!!!"

Salo

#1911
http://www.interorbital.com/interorbital_06222015_019.htm
ЦитироватьUpdate 07.25.17        
NEPTUNE 1 Guidance Test Vehicle (N1 GTV)
 
           MOJAVE 07.25.2017---The Interorbital team is nearing the completion of its N1 GTV launch vehicle which incorporates IOS' new high-efficiency CPM 2.0 filament-wound tank assembly, its new rocket engine gimballing system, its new CPM controller, and its new in-house developed guidance system. This finless, single CPM launch vehicle will be used in an upcoming low-altitude test flight. Eleven commercial and educational CubeSat and TubeSat payloads are manifested on this flight.
       
       CPM 2.0 is composed of four identical tanks containing the rocket's storable propellants and pressurant gas. This regulated pressure-fed configuration was chosen to increase engine performance while at the same time reducing cost and manufacturing time.
       
       During the test flight, the rocket will simulate an orbital launch trajectory by using the main rocket engine's throttling capability to vary the thrust-to-weight ratio, thus simulating the actual conditions that will be experienced during an orbital launch. After the rocket passes through the transonic phase and Max Q, the engine will gradually throttle down, slowing the rocket until it begins to hover. At this point, the rocket engine will be shut down and the rocket will be allowed to fall. At a safe altitude, a parachute will be deployed for vehicle and payload recovery.
       
       Following the test of the N1 GTV launch vehicle, the IOS team will construct an orbital version of the N1 launch vehicle. The N1 consists of a single CPM 2.0 and two liquid upper-stages. It will be capable of placing a 14 pound (6.4 kg) payload into a 192 mi (310 km) polar orbit---perfect for the dedicated launch of the new 3U-CubeSat plus 1U-propulsion system assemblies now trending in the small satellite industry. Since the N1 launch vehicle is 36 ft (11 m) in length and weighs only 5,400 lbs (2,449 kg), it will be the smallest orbital launch vehicle in the world. The NEPTUNE 1 is the world's lowest-cost orbital launch vehicle, with a base price of $250,000 (academic only) per launch to a circular polar orbit at 310km.
       
       The same Common Propulsion Module that powers the N1 can be bundled into groups of one, three, five, or eight to meet the mission lift requirements for payloads weighing up to 500-kgs (1,100-lbs).
"Были когда-то и мы рысаками!!!"

Salo

http://satmagazine.com/story.php?number=1600200139
ЦитироватьInterorbital Preps for NEPTUNE Test Launch
—and eleven smallsats will go along for the ride...
by Randa Milliron, Co-Founder and Chief Executive Officer, Interorbital Systems  
 
In the High Desert of California, the nation's proving ground (and airspace) for advanced space launch vehicles, and the HQ for many of the companies of New Space, Interorbital Systems (IOS) engineers are hard at work preparing for a critical milestone in the development of the company's NEPTUNE Rocket series.

The Interorbital team is nearing completion of its N1 GTV (NEPTUNE 1 Guided Test Vehicle) rocket which incorporates a high-efficiency CPM 2.0 filament-wound tank assembly, its new rocket engine gimbaling systems, its new CPM Controller, and a new in-house developed guidance system. The finless single CPM (Common Propulsion Module) launch vehicle will be used in an upcoming Q4 2017 low-altitude flight test.
Eleven commercial and educational CubeSat and TubeSat payloads are manifested on this flight. The rocket — a CPM 2.0/ N1 — is composed of four identical tanks containing the rocket's storable propellants and pressurant gas. This regulated pressure-fed configuration was sel ected to increase engine performance, while at the same time reducing costs and manufacturing time.
During the test flight, the rocket will simulate an orbital launch trajectory by using the main rocket engine's throttling capability to vary the thrust-to-weight ratio, thus simulating the actual conditions that will be experienced during an orbital launch.

 Interorbital's NEPTUNE-1 rocket.
 
After the rocket passes through the transonic phase and Max Q, the engine will gradually throttle down, slowing the rocket until it begins to hover. At that point, the rocket engine will shut down and the rocket will be allowed to fall. At a safe altitude, a parachute will deploy for vehicle and payload recovery.
Following the test of the N1 GTV launch vehicle, the IOS team will construct an orbital version of the N1, which consists of a single CPM 2.0 and two liquid upper-stages. It will be capable of placing a 14 pound (6.4 kg) payload into a 192 mi (310 km) polar orbit — perfect for the dedicated launch of the new 3U-CubeSat plus 1U propulsion system assemblies now trending in the smallsat industry.
As the N1 launch vehicle is 36 feet (11 meters) in length, and weighs only 5,400 lbs. (2449 kg), this will be the smallest orbital launch vehicle in the world. The NEPTUNE 1 is also the world's lowest-cost orbital launch vehicle, with a base price of $250,000 (academic price) per launch to a circular polar orbit at 310 km. The same single Common Propulsion Module that powers the N1 can be bundled into groups of three, five, or eight to meet increased lift requirements for payloads weighing up to 500kgs (1,100-lbs).

 IOS NEPTUNE-1 being prepared for launch.
 
Спойлер
What's Launching?
 Interorbital offers the lowest-cost launch opportunities in the world for suborbital, orbital, and interplanetary missions. IOS will be testing its own guidance and control systems with the upcoming launch and will also provide the platform for demonstrating and flight-testing these significant science applications and breakthrough technologies:

Wayfinder II Mission
 Wayfinder II is a 3U CubeSat designed and integrated by Boreal Space, NASA Ames Research Park, Moffett Field, California. The overarching mission of Wayfinder II is to raise the Technology Readiness Level (TRL) of technologies that are key to space science, exploration, and commerce. Boreal Space has created a unique hosted payload architecture that will house and flight-test the following four high-profile payloads aboard its Wayfinder II:

1. Spacelink Secure UHF radio
 The Spacelink Secure radio, developed in collaboration with Space Inventor of Aalborg, Denmark, is a fully redundant UHF transceiver operating in the UHF band refined as a hardware pair with a ground station source for Internet of Things (IoT) connectivity experiments — AES/GCM Encryption addresses IoT security concerns. Spacelink is the first in a series of highly capable radios that are expanding into S- and X-band frequencies. These radios are low-power, lightweight solutions for CubeSat applications; the Spacelink radios are destined to be an enabling technology for various Use Cases including connected cars, oil and gas industry, agriculture, etc.

2. SHARK Payload provided by the Stanford University Extreme Environments Laboratory (XLAB)http://xlab.stanford.edu
 Stanford University's XLAB is focused on the development of micro- and nano-systems for operation within extreme harsh environments. Researchers in Stanford's XLab are investigating the synthesis of temperature tolerant, chemically resistant, and radiation-hardened wide bandgap semiconductor thin films and nanostructures.
 These new material sets serve as a platform for the realization of sensor, actuator and electronic components that can operate and collect data under the most hostile conditions. More specifically, smart and adaptable structures for extreme environments are enabled through the technology developed in the XLAB; research efforts support a variety of applications including deep space systems, hypersonic aircraft, combustion monitoring, and subsurface monitoring.
With respect to Wayfinder II, the Extreme Environments Lab has created a hosted payload known as SHARK—1. The Principle Investigator for this effort is Karen Dowling, a Ph.D. candidate at Stanford. The purpose of this experiment is to test AlGaN (Gallium Nitride) sensors and others to measure magnetic fields, temperature, and radiation in orbital and suborbital levels.  Mitigation to susceptibility to extreme environments is an important area of research for LEO applications and beyond.


3. Graphene Experiment supplied by the Centre for Advanced 2D Materials,   National University of Singapore — Graphene Experiment provided by NUS and Wayfinder II
 This is a 3U CubeSat Structure with experimental housing — The Centre for Advanced Two-Dimensional Materials (CA2DM) of the National University of Singapore (NUS) has partnered with US-based Boreal Space to test the properties of graphene material after it has been launched into the stratosphere.
During this launch, the graphene material will be subjected to rapid acceleration, vibration, acoustic shock, strong pressure, and a wide range in temperature fluctuations. The research team will retrieve the graphene material and will be testing its properties to see if it was able to resist the various challenges imposed by the launch environment. Technologies that push the limits in graphene research by demonstrating electro-magnetic shielding; efficient solar power generation; and excellent thermal protection.

Graphene, which is one of the crystalline forms of carbon, is a relatively recent discovery in 2004. Since then, a torrent of data has been uncovered by the academic community and industry on its advantages, including ultra-thinness, mechanical strength, heat conduction and electronic properties.
In this collaboration, a team led by Professor Barbaros Özyilmaz, head of graphene research at the NUS CA2DM, prepared the graphene material by coating a substrate with a single layer of graphene. This is about 0.5 nanometers thick, which is more than 200,000 times thinner than a strand of hair.
"Graphene is the lightest thin film in nature and 1 gram can cover 2,300 square meters of area. This extreme loss mass density is perfect for space applications such as sails for spacecraft. However, efficient space sails require high optical reflectivity so they can be accelerated by sun rays or lasers beams. Being one atom thin, graphene is mostly transparent. Nevertheless, state of the art nanotechnology can make graphene highly reflective by deposition of light atomically thin metal films on its surface keeping its mass still low enough. The Center for Advanced 2D Materials is currently developing such graphene sails and other devices based on 2D materials for space exploration," said Professor Antonio Castro Neto, Director of the NUS CA2DM. "Space is the final frontier for graphene research. If this research collaboration is able to demonstrate that graphene maintains its various properties and features after the launch into stratosphere, this will open new opportunities for incorporating graphene into numerous technologies suitable for outer space and aerospace missions."       
Concurring, Ms Barbara Plante, President of Boreal Space, said, "We are dedicated to expediting access to space, and we believe that graphene plays an important role in that path, with structures and batteries for on-orbit space platforms. This launch is in support of such future uses in space."
Interorbital's suborbital launch opportunity offers materials scientists the ability to collect real-world Graphene flight research data that is extremely relevant to a program like the highly anticipated Breakthrough Starshot.


4. Robotics Payload provided by Google Lunar X PRIZE Team Hakuto, ispace, inc.
 Boreal Space will host a robotics experiment provided by TEAM HAKUTO, https://team-hakuto.jp/en/. Team Hakuto is a contender for the Google Lunar X PRIZE.  Their mission is to privately develop a spacecraft to land on the Moon and then be able to move their robotic payload more than 500 meters plus then send high resolution images to Earth (HD, 360 degree images called "Mooncasts.") They are Google Lunar X PRIZE contenders, one of five teams racing to the finish line.                    


Mexican Space Collective
 One of three Mexican smallsats scheduled to fly on IOS' suborbital launch includes Juan Diaz Infante's Project ULISES I TubeSat Arts/Music satellite. The other satellites are from UNAM and University of Zacatecas. At press time, following the recent 7.1 Mexican earthquake, IOS is awaiting word on their launch participation status.
 

 Interorbital's President/CTO/Co-Founder Roderick Milliron instructs students fr om the Compton School District's FLARE (Future Leaders of Advanced Rocket Engineering); Cal Tech; UCLA; USC; Cal State Long Beach; UC Irvine; Cal Poly Pomona; Tuskegee University and UC San Diego in the black arts of liquid rocket propulsion
 
Google Lunar X PRIZE Team SYNERGY MOON Payload
 Interorbital Systems, launch provider and member of the Google Lunar X PRIZE Team SYNERGY MOON, will fly its own team's electronics and communication package. This is identical to the one slated to be carried by its lunar rover on the surface of the Moon on the suborbital launch of the CPM 2.0 GTV. The flight will test the comms unit's behavior under the stresses of launch.
The NEPTUNE rocket test article that will carry all payloads listed in this article is also being tested on this launch for use as the main structural and propulsion component for SYNERGY MOON's LUNA Moon Rocket, which it will fly in its bid to win the Google Lunar X PRIZE. Interorbital will use its NEPTUNE 3 (N3) LUNA, a 3-module, 4-stage NEPTUNE Rocket variant to carry the GLXP payload to the Lunar surface.

Interorbital's Compton Rocket Academy
 Interorbital has begun a series of rocket-building classes held weekly at Tomorrow's Aeronautical Museum at the Compton/Woodley Airport. Each class is an exercise in workforce development with structured engineering and hands-on skills training organized and taught by Roderick Milliron who developed the curriculum with IOS partner and educator Randa Milliron. Students learn by doing as they participate in the build of an Interorbital Neutrino bi-propellant liquid rocket kit.
 www.interorbital.com
[свернуть]
"Были когда-то и мы рысаками!!!"

Salo

"Были когда-то и мы рысаками!!!"