Солнечные паруса.

Автор Agent, 12.08.2004 07:37:59

« назад - далее »

0 Пользователи и 2 гостей просматривают эту тему.


ЦитатаПервый в Китае солнечный парус проверил ключевые технологии на орбите
2019-12-31 17:45:06丨Russian.News.Cn

Пекин, 31 декабря /Синьхуа/ -- Солнечный парус "SIASAIL-I", разработанный Шэньянским институтом автоматики при Академии наук Китая, успешно проверил многие ключевые технологии на орбите.

Солнечный парус - космический корабль, приводимый в действие давлением отраженного солнечного света на мембране. Он не потребляет дополнительного химического топлива и рабочей среды во время навигации и отличается малой массой, большим коэффициентом сбора-расширения, низкой себестоимостью, низким энергопотреблением и большой дальностью.

Солнечный парус может применяться во многих областях, включая обнаружение астероидов, мониторинг геомагнитных бурь, исследование полярных солнечных лучей и удаление космического мусора.

После выхода спутниковой платформы на орбиту солнечный парус выполняет техническую проверку через двухступенчатое развертывание. На первом этапе применяется механизм термической резки и пассивного высвобождения, а корпус солнечного паруса выталкивается из спутниковой платформы и поворачивается на 90 градусов, сообщил заместитель главы лаборатории технологии космической автоматизации Лю Цзиньго.

Второй этап - установка мачты и постепенное разворачивание паруса, площадь поверхности которого составляет около 0,6 кв. м, отметил он.

Согласно данным и фотографиям, полученным со спутника, ключевой технологический тест солнечного паруса проходит гладко, что свидетельствует об успехе миссии по проверке солнечного паруса.

Кроме того, исследователи также проведут исследования срока службы механизма, характеристик материалов и высоты орбиты с целью проверки способности солнечного паруса по выводу с орбиты и изучения его потенциального применения в сокращении объема космического мусора.


ЦитатаJason Davis • January 10, 2020

Here's What We've Learned So Far fr om LightSail 2

High above Earth, The Planetary Society's LightSail 2 spacecraft is still sailing on sunbeams. During the 5 months since LightSail 2 deployed its solar sail on 23 July 2019, the spacecraft has continued to demonstrate the first controlled solar-sailing flight in Earth orbit.

The LightSail 2 team is releasing a paper today that describes new results from the mission. Purdue University's Justin Mansell is also presenting the results at the 30th Space Flight Mechanics Meeting in Orlando, Florida. The paper recaps mission events through late November, discusses the performance of the solar sail and attitude control system, and describes how the spacecraft's orbit has changed.

The Planetary Society
LightSail 2 captured this image of the Gulf of Oman and the Persian Gulf on 14 December 2019. The sail appears slightly curved due to the spacecraft's 185-degree fisheye camera lens. The image has been color corrected and some of the distortion has been removed.

Earth's atmosphere is a drag

LightSail 2 flies at a higher altitude than most satellites in low-Earth orbit. While the International Space Station orbits Earth at an altitude of about 400 kilometers, LightSail 2 orbits at about 720 kilometers. Since fewer spacecraft orbit at LightSail 2's altitude, there wasn't enough data on Earth's atmospheric density to reliably predict how much atmospheric drag would slow down the spacecraft. We now know for certain that the atmosphere at 720 kilometers is dense enough to overcome the thrust imparted by solar sailing.

The team uses a simple on-off sail control strategy each orbit, turning the sail edge-on to the Sun's rays when the spacecraft is traveling toward the Sun, and face-on to the Sun when moving away from it. Out of each 100-minute orbit, LightSail 2 spends 67 minutes either in eclipse or moving toward the Sun. Of the remaining 33 "sail-able" minutes each orbit, the spacecraft spends about 5 minutes turning to the desired orientation. Therefore, LightSail 2 enjoys at most 28 minutes of each orbit in an orientation for capturing the momentum of solar photons to change its velocity.

Mansell and his colleagues documented LightSail 2's orbital change during time intervals in which it was actively orienting itself for solar sailing and compared that change to periods in which the orientation was not controlled. When the spacecraft was randomly oriented, its semimajor axis—a measure of the size of the orbit—shrank by an average of 34.5 meters per day. When it was solar sailing, the orbit only shrank by an average of 19.9 meters per day. Yet, the rate is highly variable and the semimajor axis actually increased by as many as 7.5 meters some days when sailing, which means LightSail 2 increased its orbital energy during those periods.

This video shows LightSail 2's orientation with respect to the Sun during a single orbit on 24 September 2019. Gaps between data points have been interpolated. The red line shows the direction of the Sun, and the blue line shows the direction of the local magnetic field. When the sailing command is "feather," LightSail 2 attempts to turn its sail edge-on to the solar photons, meaning the red arrow should be roughly parallel with the sail. (The Sun to -z angle should be roughly 90 degrees.) When the sailing command is "thrust," LightSail 2 tries to turn its sail broadside to the solar photons, meaning the red arrow should roughly make a 90-degree angle with the sail. (The Sun to -z angle should be roughly 0 degrees.) For more, see https://www.planetary.org/blogs/jason-davis/heres-what-we-learned-so-far-ls2.html. Video credit: Justin Mansell, Purdue University

The increases in orbital energy from solar sailing are generally not enough to overcome atmospheric drag, so LightSail 2's orbit is gradually decaying.  Pre-launch orbital models predicted that the spacecraft would reenter Earth's atmosphere and burn up about a year after sail deployment. But since there are few prior examples of spacecraft like LightSail 2 having high area-to-mass ratio, the actual timeline will provide new information about orbital decay rates.

Future solar sails will be used in higher Earth orbits, or on interplanetary trajectories. NASA's NEA Scout will ride a Space Launch System rocket out near the Moon and then use solar sailing to visit an asteroid. The LightSail 2 team is sharing data and expertise with the NEA Scout team.

The ups and downs of LightSail 2's orbit

If you've looked at our mission control page over the past few months, you may have noticed LightSail 2's orbital high and low points above the Earth, known as the apogee and perigee, respectively, have been cycling up and down.

This chart shows LightSail 2's orbit apogee and perigee as reported by space-track.org since 8 July 2019. Sail deployment occurred on 23 July 2019. The entire dataset can be downloaded here.

Right after sail deployment in July, LightSail 2's apogee increased, while perigee decreased. In September, the trend reversed: apogee decreased, while perigee increased. In late October, the trend reversed again. And then it began reversing again in December.

This cycle has two causes: Earth's nonspherical shape, and its orbital motion around the Sun. Earth's diameter at the equator is about 42 kilometers larger than it is at the poles, making its gravity stronger over the equator. This uneven gravity makes the positions of perigee and apogee precess, or wobble; if you were watching the spacecraft's orbit from high above the north pole, you'd see it wobbling like a hula hoop spinning around your waist. While all this is happening, Earth is also revolving around the Sun, changing the angle between the light pressure from the Sun and the positions of LightSail 2's apogee and perigee.

Justin Mansell, Purdue University
Earth's uneven gravity makes LightSail 2's orbit precess, or wobble. The direction of the Sun (red arrow) relative to the orbit also changes over time as the Earth orbits the Sun.

The best orientation for raising LightSail 2's apogee is when perigee occurs on the thrust-on side of the orbit, as shown above in blue. Conversely, when perigee occurs on the thrust-off side of the orbit, as shown above in red, apogee decreases.

Momentum management

One of the mission's major challenges stems from LightSail 2's single momentum wheel, which the spacecraft uses to swing itself parallel and perpendicular to the Sun's rays each orbit. The wheel hits a pre-defined speed lim it about once per day, whereupon LightSail 2 must exit solar-sailing mode and stabilize itself with its electromagnetic torque rods.

Early in the mission, the team was doing this manually, which proved to be inefficient, especially when communications were spotty, or when the spacecraft was suffering from other technical glitches. The process is now automated, which has improved performance. In the new paper, the team conveys an important lesson for other solar sail spacecraft in Earth orbit: managing the momentum imparted by frequent sail orientation changes is a key technical challenge.

Power generation

LightSail 2 only has solar cells on one side of its solar sail. LightSail 1 had a solar panel on the opposite side, but this was removed for LightSail 2's design so engineers could install a cluster of special mirrors used to laser-range the spacecraft from Earth. This process involves zapping LightSail 2 with a laser and measuring the reflection time to more accurately determine the spacecraft's orbit.

Jason Davis / The Planetary Society
LightSail 2 flew into space with a mini-DVD containing a Planetary Society member roster, a list of Kickstarter contributors, and names and images from the Society's "Selfies to Space" campaign.

In certain orientations, LightSail 2's solar sail entirely shadows the solar panels, and the spacecraft does not receive adequate power from the Sun, causing brownouts. The team has been able to work around brownouts by carefully managing the spacecraft's power budget and attitude-control mode. Future solar sail spacecraft should take sail shadowing into account for mission planning.

What's next? 

The LightSail 2 team recently added a new control mode to the spacecraft called sun-pointing. This mode is designed to keep the solar sail face-on to the Sun throughout its full orbit. A constantly Sun-facing attitude won't reduce orbital decay like the on/off mode does, but it reduces momentum-wheel saturation and provides a favorable orientation for battery charging. It will also test the spacecraft's pointing accuracy, and could provide a more consistent initial attitude for starting for on-off thrust maneuvers.

The mission team will also continue to take pictures. The technical reason for pictures is to document the sail's condition and shape, but the pictures are also beautiful to look at for the team and public alike. You can see all raw images from the spacecraft here, or view processed images in our LightSail 2 multimedia gallery.

Finally, as the orbit shrinks, the team will study the effect of the sail on the rate of orbital decay, sharing the data with other teams who are studying the use of drag sails to deorbit spacecraft.

The Planetary Society
LightSail 2 captured this image on 24 November 2019. The southern tip of Madagascar appears at right. North is approximately at the bottom of the image. A faint smoke plume can be seen casting a shadow. The sail appears slightly curved due to the spacecraft's 185-degree fisheye camera lens. The image has been color corrected and some of the distortion has been removed.

The Planetary Society
LightSail 2 captured this image on 25 November 2019. The top end of Australia's Northern Territory is in the center of the image. North is approximately at the bottom of the image. The city of Darwin is beneath the clouds near the tip of the sail's middle boom. The island of New Guinea can be seen to the left. A lens flare also appears in the left part of the image. The sail appears curved due to the spacecraft's 185-degree fisheye camera lens. The image has been color corrected and some of the distortion has been removed.


Цитата Jonathan McDowell‏ @planet4589 11 ч. назад

Altitude of Lightsail-2 versus time  (red: apogee, perigee;  blue; average of the two).; shows that drag is a much bigger effect that any net sail thrust.  #YurisNight

Space books


ЦитатаВ космос на солнечных парусах. Корабль LightSail 2 успешно провел 30 месяцев на орбите Земли

    LightSail 2, спутник, солнечный парус
Фото: Universe Today | Фотография Земли, сделанная спутником LightSail 2
Космический аппарат с солнечным парусом LightSail 2 сможет помочь будущим исследователем космоса, которые смогут использовать для движения своих кораблей солнечную энергию.
Небольшой спутник с майларовым парусом площадью 32 кв.м, отправился в космос еще в июне 2019 года. Его задача – показать эффективность использования солнечных парусов в космосе, которые можно будет использовать в дальнейшем на космических аппаратах и получать энергию для движения с помощью солнечного света. Представители Планетарного общества, организации, которая руководит этим проектом заявили, что эту технологию NASA применит уже в ближайшем будущем, сообщает Universe Today.

LightSail 2, спутник, солнечный парус

Фотография Земли, сделанная спутником LightSail 2

Фото: Universe Today

Уже через месяц после запуска на орбиту Земли, LightSail 2 развернул свой солнечный парус и смог подняться выше в космос. Это доказало работоспособность данной технологии, которую предложили реализовать в Планетарном обществе, американской некоммерческой организации, которая занимается проектами в области исследования космоса.
    LightSail 2, солнечный парус

Спутник LightSail 2 во время проверки на Земле

Фото: wikipedia

"Спутник вышел на большую высоту без использования ракетного топлива, только с помощью солнечного света. Эта технология показывает, что космический аппарат может получать энергию для движения, используя только солнечные лучи", — говорит исполнительный директор Планетарного общества Билл Най.
    NEA Scout, NASA, астероид, солнечный парус

Космический аппарат NEA Scout будет исследовать околоземные астероиды

Фото: wikipedia

Запуск спутника с солнечным парусом обошелся членам Планетарного общества в 7 млн долларов. И сейчас организация предоставила данные о миссии NASA, чтобы помочь агентству в подготовке к трем предстоящим полетам космических аппаратов с солнечным парусом: NEA Scout, Solar Cruiser и ACS3.
    Solar Cruiser, NASA, Солнце, солнечный парус

Космический аппарат Solar Cruiser будет заниматься исследованием Солнца

Фото: wikipedia

По мере движения сначала LightSail 2 летел медленно, но со временем набирал скорость. Он сейчас летает на орбите на высоте 687 км над поверхностью Земли. Но LightSail 2 не может изменять положение своего паруса и, по словам экспертов, он начинает снижаться, сойдет с орбиты через год и сгорит в атмосфере Земли. Во время своего полета LightSail 2 делает снимки поверхности Земли.
Напоминаем, что сразу же после выхода на орбиту в 2019 году космический аппарат прислал первые фотографии.


Цитата: Space books от 20.11.2021 15:48:53"Спутник вышел на большую высоту без использования ракетного топлива, только с помощью солнечного света. Эта технология показывает, что космический аппарат может получать энергию для движения, используя только солнечные лучи", -- говорит исполнительный директор Планетарного общества Билл Най.

По мере движения сначала LightSail 2 летел медленно, но со временем набирал скорость. Он сейчас летает на орбите на высоте 687 км над поверхностью Земли.
Как же спутник поднимался, если его скорость росла?! Очень странно.
Не все у нас еще хорошо, кое-что - просто замечательно!


А вот так. Чтобы скорость упала, надо ускориться. :)


ЦитатаКубсат с солнечным парусом LightSail 2 сошёл с орбиты, закончив тем самым свою трёхгодичную миссию
17 ноября 3U кубсат LightSail 2 от Planetary Society, миссия которого была полностью финансирована за счёт краудфандинга, сошёл с орбиты и сгорел в плотных слоях атмосферы Земли.
Он был запущен на ракете Falcon Heavy в рамках миссии STP-2 - 25 июня 2019 года. Миссия аппарата, которая продлилась 3 года и 4 месяца, подтвердила, что технология солнечного паруса, когда комический аппарат может изменять высоту своей орбиту с помощью своего рода "паруса" - действительно работает. У солнечного света нет массы, но есть импульс, который можно передать специальному солнечному парусу из очень тонкой фольги. В результате этого обеспечивается небольшая, но непрерывная тяга, что позволяет космическому аппарату менять высоту своей орбиты. Кроме того, кубсат доказал, что небольшие аппараты могут развернуть относительно большой солнечный парус (его площадь у LightSail 2 составляла 32 м²), который будет эффективен для их перемещения в космосе.
Кубсат начал свою работу на высоте около 720 километров, где атмосфера всё ещё достаточно плотная, чтобы создавать сопротивление и замедлять космические аппараты. По мере того, как атмосферное сопротивление медленно тянуло LightSail 2 обратно к Земле, он успешно использовал свой парус, чтобы снизить скорость понижения орбиты, а иногда и полностью преодолевать сопротивление атмосферы. После 18 000 витков вокруг Земли и ~800 миллионов пройденных километров (ред. - у Planetary Society указано - 8 млн, но скорее всего это ошибка), сопротивление, наконец, победило и аппарат завершил свою миссию.
Специалисты отмечают, что увеличение атмосферного сопротивления отчасти связано с увеличением солнечной активности. Команда Planetary Society продолжит анализировать собранные данные, но обработанные результаты их работы уже переданы другим командам предстоящих миссий на солнечном парусе, таким как NEA Scout и ACS3. Кубсат NEA Scout стартовал 16 ноября на борту ракеты SLS, как её вторичная нагрузка. Этот космический аппарат развернёт солнечный парус площадью уже 86 м², чтобы покинуть лунную орбиту и совершить облёт 18-метрового астероида 2020 GE, сделав его снимки.

В то время как миссия LightSail 2 закончилась, миссии других аппаратов на этой технологии будут продолжаться и дальше, поскольку начинается новая эра путешествий в космосе с использованием солнечного паруса: "Мы бросили вызов и у нас получилось подтвердить, что солнечный парус - работает. Желаем всего наилучшего тем, кто отправит подобные спутники в бескрайнее пространство космоса, и с нетерпением ждём его захватывающих исследований!", — заявил главный научный руководитель миссии LightSail 2, Брюс Бетц (Bruce Betts).