Канопус-В-ИК и 72 попутных КА – Союз-2-1А – Байконур 31/6 – 14.07.2017, 09:36:49 ДМВ

Автор che wi, 27.05.2017 17:02:32

« предыдущая - следующая »

0 Пользователей и 1 гость просматривают эту тему.

tnt22

https://www.roscosmos.ru/23744/
ЦитатаРОСКОСМОС. ПОДГОТОВКА К ЗАПУСКУ КА «КАНОПУС-В-ИК»
09.07.2017 15:42

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
 Скрытый текст:
Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
9 июля 2017 года в монтажно-испытательном корпусе площадки 31 космодрома БАЙКОНУР специалисты предприятий РОСКОСМОСА завершили операции по стыковке космической головной части с третьей ступенью ракеты-носителя (РН) «Союз-2.1а» в рамках подготовки запуска космического аппарата (КА) «Канопус-В-ИК» и кластера из 72 малых спутников попутной нагрузки.

10 июля запланированы работы по общей сборке ракеты космического назначения (РКН), рассмотрение государственной комиссией результатов подготовки РКН и наземного оборудования, а также принятие решения о вывозе РКН «Союз-2.1а» на стартовую площадку.

Пуск РН «Союз-2.1а» с КА «Канопус-В-ИК» запланирован на 14 июля 2017 года в 09:36 мск с площадки №31 космодрома БАЙКОНУР. Разгонный блок «Фрегат» обеспечит выведение КА «Канопус-В-ИК» и попутных малых спутников на три различные орбиты.


tnt22

ЦитатаСолнечные батареи Канопуса. Работы в МИКе.

Телестудия Роскосмоса

Опубликовано: 10 июл. 2017 г.

Засветка солнечных батарей космического аппарата «Канопус-В-ИК».
Пуск РН «Союз-2.1а» с КА «Канопус-В-ИК» запланирован на 14 июля 2017 года в 09:36 мск с площадки №31 космодрома БАЙКОНУР. Разгонный блок «Фрегат» обеспечит выведение КА «Канопус-В-ИК» и попутных малых спутников на три различные орбиты.
https://www.youtube.com/watch?v=9OjsO14XRz4https://www.youtube.com/watch?v=9OjsO14XRz4 (3:32)

PIN

Неслабо раскачивается СБ при раскрытии. 
Интересно, зачем такая замороченная конструкция с раскрытием в 2 или 3 этапа (после 1го приходящая в убойное для аппарата состояние - элементами в надир), а не просто 3 панели гармошкой, когда даже при неполном раскрытии все в зенит смотрит всегда?

tnt22

ЦитатаКанопус-В-ИК. Накатка головного обтекателя.
Телестудия Роскосмоса
 
Опубликовано: 10 июл. 2017 г.

Накатка головного обтекателя космического аппарата «Канопус-В-ИК» и кластера из 72 малых спутников попутной нагрузки.
https://www.youtube.com/watch?v=9OJSRYgVe40https://www.youtube.com/watch?v=9OJSRYgVe40 (4:14)

Space Alien

РКН «Союз-2.1а» с КА «Канопус-В-ИК». Общая сборка


10 июля 2017 года проведена общая сборка ракеты космического назначения (РКН) «Союз-2.1а».
Пуск РН «Союз-2.1а» с КА «Канопус-В-ИК» запланирован на 14 июля 2017 года в 09:36 мск с площадки №31 космодрома БАЙКОНУР. Разгонный блок «Фрегат» обеспечит выведение КА «Канопус-В-ИК» и попутных малых спутников на три различные орбиты.

https://www.youtube.com/watch?v=NcA1DjgARoU
https://www.youtube.com/watch?v=NcA1DjgARoU

Space Alien

Некоторая информация:

ЦитатаПланируемая программа полета


09:36:49 - Старт ракеты космического назначения;
09:38:46 - Отделение 1 ступени;
09:41:36 - Отделение 2 ступени;
09:41:38 - Сброс головного обтекателя;
09:45:37 - Отделение головного блока;
09:45:42 - 09:52:18 - РБ «Фрегат». Формирование первой переходной орбиты;
10:35:01 - 10:36:27 - РБ «Фрегат». Формирование орбиты отделения КА «Канопус-В-ИК»;
10:38:07 - Отделение КА «Канопус-В-ИК» (орбита i=97,44°; H = 522,5 км; h = 478,6 км);
11:13:29 - 11:14:35 - РБ «Фрегат». Формирование второй переходной орбиты;
11:58:29 - 11:59:35 - РБ «Фрегат». Формирование орбиты отделения группы МКА;
12:01:43 - 12:05:03 - 1-й этап. Отделение 5-ти МКА (орбита i=97,61°; H = 601,5-600,1 км; h = 600,0-590,1 км);
12:10:03 - 12:26:43 - 2-й этап. Отделение 19-ти МКА (орбита i=97,62-97,61°; H = 601,0-606,9 км; h = 580,1-587,4 км);
12:51:49 - 12:53:15 - РБ «Фрегат». Формирование третьей переходной орбиты;
13:34:39 - 13:35:51 - РБ «Фрегат». Формирование орбиты отделения группы МКА;
17:18:23 - 17:41:17 - Отделение 48-ми МКА (орбита i=97,00-97,01°; H = 485,0-477,4 км; h = 482,2-450,5 км);
17:51:49 - 17:53:45 - Формирование орбиты «увода» разгонного блока;
~18:18:49 - Вход разгонного блока в атмосферу (высота 100 км). Затопление в акватории Индийского океана.
https://www.roscosmos.ru/23687/

tnt22

https://www.roscosmos.ru/23753/
ЦитатаРОСКОСМОС. РКН «СОЮЗ-2.1А» ГОТОВА К ВЫВОЗУ НА СТАРТОВУЮ ПЛОЩАДКУ
10.07.2017 17:57


Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
 Скрытый текст:

Фото: РКЦ «Прогресс»/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
 
Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
10 июля 2017 года в монтажно-испытательном корпусе площадки 31 специалисты предприятий РОСКОСМОСА завершили общую сборку ракеты космического назначения «Союз-2.1а». По завершении работ состоялось заседание технического руководства и Государственной комиссии о готовности ракеты космического назначения к вывозу на стартовый комплекс. Члены комиссии выдали заключение о готовности РКН «Союз-2.1а» к вывозу и установке на стартовом комплексе 11 июля 2017 года.

Пуск РН «Союз-2.1а» с КА «Канопус-В-ИК» запланирован на 14 июля 2017 года в 09:36 мск с площадки №31 космодрома БАЙКОНУР. Разгонный блок «Фрегат» обеспечит выведение КА «Канопус-В-ИК» и попутных малых спутников на три различные орбиты.

Подробная информация о пусковой кампании.


tnt22

https://www.roscosmos.ru/23756/
ЦитатаРОСКОСМОС. РКН «СОЮЗ-2.1А» УСТАНОВЛЕНА В ПУСКОВУЮ СИСТЕМУ
11.07.2017 11:25


Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
 Скрытый текст:

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС

Фото: КЦ «Южный»/ЦЭНКИ/РОСКОСМОС
11 июля 2017 года в соответствии с решением государственной комиссии ракета космического назначения (РКН) «Союз-2.1а» вывезена на стартовую площадку №31 космодрома БАЙКОНУР и установлена в пусковую систему. Специалисты предприятий РОСКОСМОСА начали работы по подготовке РКН к пуску по графику первого стартового дня.
 Скрытый текст:
11 июля будут проведены генеральные испытания ракеты-носителя и изучение телеметрической информации по результатам испытаний. Во второй стартовый день специалисты расчета в соответствии с технологическим графиком проведут работы по контрольному набору стартовой готовности (КНСГ) разгонного блока «Фрегат». 13 июля - резервный день. А ранним утром 14 июля запланировано заседание государственной комиссии, по итогам которой будет принято решение о заправке ракеты-носителя компонентами топлива.

Ракета-носитель «Союз-2.1а» должна вывести на незамкнутую околоземную орбиту головной блок с космическим аппаратом «Канопус-В-ИК», группой из 72 малых спутников и разгонным блоком «Фрегат». Пуск ракеты-носителя запланирован на 14 июля 2017 года в 9:36 мск.

«Канопус-В-ИК» является вторым аппаратом в космическом комплексе дистанционного зондирования Земли «Канопус-В». Космический аппарат оперативного мониторинга техногенных и природных чрезвычайных ситуаций «Канопус-В-ИК» предназначен для решения оперативных задач:
    [/li]
  •       мониторинга различных ЧС, в том числе стихийных гидрометеорологических явлений;
  •       обнаружения очагов лесных пожаров площадью 25 м2, крупных выбросов загрязняющих веществ в природную среду;
  •       мониторинга сельскохозяйственной деятельности, природных (в том числе водных и прибрежных) ресурсов;
  •       землепользования;
  •       наблюдения заданных районов земной поверхности;
  •       картографирования;
  •       обновления топографических карт.
Также в качестве попутной нагрузки по федеральным и коммерческим контрактам на целевые орбиты планируется вывести 72 малых космических аппарата.

Аппараты, запускаемые по федеральным контрактам:
    [/li]
  •       КА «МКА-Н №1» типа 6U CubeSat (Россия, Даурия, по заказу РОСКОСМОСА);
  •       КА «МКА-Н №2» типа 6U CubeSat (Россия, Даурия, по заказу РОСКОСМОСА).
Аппараты, запускаемые по контрактам ОАО «Главкосмос»:
    [/li]
  •       Микроспутник Flying Laptop (Германия);
  •       Микроспутник TechnoSat (Германия);
  •       Микроспутник WNISAT-1R (Япония);
  •       Микроспутник NorSat-1 (Норвегия/Канада);
  •       Микроспутник NorSat-2(Норвегия/Канада);
  •       48 КА Dove типа 3U CubeSat в рамках ПН Flock-2k (США);
  •       3 КА CICERO типа 6U CubeSat (США);
  •       2 КА Corvus-BC типа 6U CubeSat (США);
  •       8 КА LEMUR типа 3U CubeSat (США);
  •       КА NanoACE типа 3U CubeSat (США);
  •       КА «Маяк» типа 3U CubeSat (Московский Политехнический Университет);
  •       КА «Искра-МАИ-85» типа 3U CubeSat (Московский Авиационный Институт);
  •       КА «Эквадор UTE-ЮЗГУ» типа 1U CubeSat (Юго-Западный Государственный Университет).
Подробная информация о пусковой кампании

tnt22

ЦитатаВывоз РКН «Союз-2.1а» с КА «Канопус-В-ИК» и 72 малыми спутниками

Телестудия Роскосмоса

Опубликовано: 11 июл. 2017 г.

11 июля 2017 года ракета космического назначения (РКН) «Союз-2.1а» вывезена на стартовую площадку космодрома Байконур и установлена в пусковую систему.
https://www.youtube.com/watch?v=rZqNurSc4gEhttps://www.youtube.com/watch?v=rZqNurSc4gE (5:36)

tnt22

http://blog.isilaunch.com/isilaunch11-patch-payloads/
ЦитатаISILaunch11 patch and payloads

By Andra          

July 11, 2017

                   
For the ISLaunch11 mission, ISL and ISIS are proud to provide the full hardware & integration service for our customers Planet and Astro Digital. On this flight, 13 QuadPack deployers of various configurations will house a total of 50 satellites. 48 Doves and the two Corvus-BC1 and Corvus-BC2 satellites from our US customers will be individually deployed into orbit from their QuadPack launch canisters by means of the ISIS Modular Deployment Controller (iMDC), an in-house development which allows for precise and complex satellite deployment control. There is a total of three of such systems on this flight which are specifically tailored to interface with the Fregat upper stage.



For this mission we are grateful to our customers, and for the trust in realizing this very complex mission. Special thanks go out to our partner Commercial Space Technologies, which has played an important role in this project.

The lift off of this mission is scheduled for coming Friday 08:36 CEST. Upon orbit insertion by the trusty Soyuz, the Fregat upper stage will realize several different orbits in which the satellites will be deployed, after the main payload: the Kanopus-V-IK satellite. A total of 73 satellites are manifested on this flight. If successful, this launch will mark a new record in terms of total number of satellites launched by means of a single Russian launch vehicle. The world record is still held by one of our last missions; the ISL17 launch, which lofted over 100 satellites on a PSLV earlier this year.


tnt22

http://spaceflight101.com/soyuz-kanopus-v-ik/soyuz-rocket-reaches-baikonur-launch-pad-for-friday-liftoff-with-73-satellites/
ЦитатаSoyuz Rocket reaches Baikonur Launch Pad for Friday Liftoff with 73 Satellites
July 11, 2017


Photo: Roscosmos

A Russian Soyuz 2-1A rocket stands tall atop its Baikonur launch pad after a Tuesday morning rollout to set the stage for liftoff at 6:36 UTC on Friday with a total of 73 satellites - ranging fr om 600 to 1 Kilogram, including a small satellite that could become the brightest artificial object in the night sky.

The mission, aiming for three distinct orbits, will rank second for the most satellites deployed in one go.
 Скрытый текст:
The 46-meter tall Soyuz rocket emerged from its assembly hall at the traditional early morning hour for a short rail journey over to the launch pad at Site 31 wh ere the vehicle was placed in its vertical position for two days of final testing ahead of fueling and liftoff. Hidden under the rocket's payload fairing are satellites from Russia, the United States, Germany, Japan, Canada and Norway - covering various fields such as Earth observation, ship-tracking, communications, meteorology and technology demonstration.


Soyuz Payload Stack with Kanopus at the top - Photo: Roscosmos

The payload cluster is headed by the 600-Kilogram Kanopus V-IK satellite that represents the primary passenger of Friday's mission, aiming to continue expanding the Kanopus constellation that sets out to have six satellites in orbit by the end of 2018 to form a responsive Earth observation system.

Kanopus is operated as part of Russia's civilian Earth-observation program that comprises two major branches - the heavy Resurs imaging satellites that deliver high-resolution imagery of Earth and Kanopus, using much lighter satellites to deliver medium-resolution imagery covering a  larger area for application in mapping, environmental monitoring, agriculture and disaster relief.


Kanopus with its Solar Arrays Extended - Photo: Roscosmos

The first Kanopus V satellite launched in July 2012 and was expected to be followed one year later by Kanopus-V No.2, however that satellite's launch was pushed to allow the addition of an infrared-imaging payload to the satellite which was re-named Kanopus V-IK to highlight its infrared capability for fire and hot spot detection down to a size of five meters. In addition to the infrared payload, the satellite hosts a black-and-white imaging system achieving a 2.1-meter ground resolution and a four-band full-color imager that delivers images with a 12-meter resolution.

The secondary satellites are being launched by Glavkosmos, a subsidiary of the Roscosmos State Corporation that aims to become a major player on the global launch market by offering low-cost launch opportunities for small satellite operators on Russia's highly reliable Soyuz launch system. Up to 120 secondary payloads are manifested by Glavkosmos for launch this year on three Soyuz missions, one from Baikonur and two from the new Vostochny Cosmodrome that opened for business in 2016.


CGI of Kanopus et al. heading into Orbit aboard Soyuz - Image: Glavkosmos

Glavkosmos is working with Seattle-based Spaceflight for this initial Soyuz cluster mission, though aims to work directly with satellite operators to cut out the middle man that comes in the form of launch brokers for small satellite and CubeSat missions. ECM Space Technologies, headquartered in Germany, has been contracted to handle the integration of CubeSats.

The company expects to fly secondary payloads on three Soyuz missions per year with at least one flight into Sun Synchronous Orbit, the favored destination for most of the world's imaging satellites. Glavkosmos sees direct competition in India's Polar Satellite Launch Vehicle that set a new record for the most satellites launched on a single rocket back in February when it deployed a total of 104 satellites, only three of which were non-CubeSats.

Glavkosmos cites its advantages in competitive launch prices, Soyuz's reliability record and high flexibility in moving payloads from mission to mission as required by customers.

The 72-satellite cluster heading into orbit on Friday comprises five microsatellites from 17 to 120 Kilograms and 67 CubeSats - seven 6U, fifty-nine 3U and one 1U for a total of 220 CubeSat Units.

Click the following images for detailed technical overviews of each individual payload:
 Скрытый текст:

Weighing in at 120 Kilograms is the Flying Laptop developed at the University of Stuttgart, combining a technology demonstration mission with operational application for Earth observation and ship-tracking. The satellite is outfitted with a multi-spectral imager for Earth-observation at 21.5m resolution, a 160-meter Panoramic Camera, an AIS ship-tracking platform, and OSIRIS, a laser communications terminal that could enable high-data-rate communications up to 100Mbit/s for small satellite missions. - Photo: IRS/Universität Stuttgart


The 43-Kilogram WNISAT-1R, operated by Weather News Inc, hosts a four-camera imaging system to monitor the northern latitudes along with a Global Navigation Satellite System Reflectometry Instrument for sea state measurements to deliver data for safe ship traffic through the Arctic Sea. - Image: Weathernews


TechnoSat of the University of Berlin has a launch mass of 18kg and demonstrates the TUBiX satellite platform for future operational use and tests out various technologies such as a Fluid Dynamic Actuator for attitude control via pumping liquid metal through a ring, a high-precision star tracker for small satellites, high-speed S-Band transmitters and nano reaction wheels. The satellite also hosts a DLR payload for measuring impacts of small objects. - Image: TU Berlin / DLR


 
NORSat-1 (<30kg) and NORSat-2 (16.7kg) are operated by the Norwegian Space Center for the collection of Automatic Identification System data to monitor ship traffic in the Norwegian territorial waters. The #1 satellite also hosts a Total Solar Irradiance radiometer for data continuation of this 'Essential Climate Variable' as well as a Langmuir probe for space weather measurements. NORSat-2 is equipped with a VHF Data Exchange (VDE) payload to enable the relay of Application Specific Messages. - Image: UTIAS


CICERO-1, 2 and 3 join the CICERO-6 satellite launched earlier this year to establish a constellation of 6U CubeSats gathering radio occultation measurements of Earth's atmosphere for operational meteorology and surface remote sensing through backscattered signals from the GPS and Galileo satellite constellations. - Image: Tyvak


Corvus-BC 1 and 2 are the first two of at least ten 6U CubeSats building the Landmapper-BC constellation segment operated by AstroDigital to deliver Earth imaging data for the commercial market and to track the global economy of food production. The 11-Kilogram BC satellites, achieving a 22-meter ground resolution, will be joined by 20 Corvus-HD satellites to capture higher resolution imagery, but of smaller areas. - Image: Astro Digital


MKA-N 1 and 2 are 6U Earth-imaging CubeSats built by Dauria Aerospace for operation by Roscosmos to capture 22-meter imagery of Earth in three color bands. They are similar to the Corvus-BC satellites because both come from a former U.S.-Russian partnership that branched out into two different programs. - Photo: Dauria Aerospace


Mayak, a 3U CubeSat, is the most interesting payload of this mission for satellite observers, aiming to create an artificial star brighter than any other man-made object in orbit, even surpassing the brightness of the International Space Station. The small satellite will deploy four triangular reflectors each with a surface of four square meters to create a tetrahedral shape that will be placed into an intentional tumbling motion to create a twinkling star passing through the sky. While interesting for hobby observers, astronomers who fight to keep skies as dark as possible are not particularly happy about the crowdfunded project. - Image: CosmoMayak


NanoAce is a technology demonstration satellite built by Tyvak Nano Satellite Systems, California to test out the company's Endeavor platform (pictured) that is available for various operational missions. The satellite is outfitted with two visible and two IR cameras as well as a cold gas propulsion system with eight thrusters. - Image: Tyvak Nano Satellite Systems


Eight Lemur-2 CubeSats are aboard the Soyuz to join Spire Global's constellation satellites collecting ship-tracking data on a global scale for commercial distribution and measuring atmospheric profiles through GPS occultation to assist in operational meteorology. These will bring the total number of Lemur-2 satellites launched into orbit to 48, not all of which are still in orbit or operational. - Photo: Spire


Planet's Flock-2k Doves, a total of 48 CubeSats, will be orbited by Soyuz, expanding the company's Earth Scanner in Sun Synchronous Orbit that is capable of imaging the entire Earth once per day. Flock-2k is the second largest group of Doves orbited in one go, following up on the launch of 88 Doves in February aboard the Indian PSLV rocket to establish the Earth Scanner. - Credit: NASA

The secondary payloads are rounded up by Iskra-MAI-85, a 3U CubeSat from the Moscow Aviation Institute, and the sole 1U CubeSat of this mission, Ecuador-UTE-YuZGU - developed under a partnership by the Ecuadorian Universidad Tecnológica Equinoccial and the Russian Southwestern State University.

Photo: Roscosmos

Friday's Soyuz/Fregat mission will be particularly complex, taking the upper stage through a roller-coaster ride to deliver the satellites to three distinct orbits followed by a targeted deorbit maneuver of the Fregat, creating a mission duration of eight hours and 42 minutes.

Liftoff is timed for precisely 6:36:49 UTC and Soyuz will depart the Baikonur Cosmodrome with a thrust of over 420 metric ton force, provided by the multi-chamber engines on the core stage and the four strap-on boosters. The boosters, each holding nearly 40 metric tons of propellant, will complete their job one minute and 58 seconds into the flight, dropping away from the still-firing core stage that will continue toward space with a thrust of 102 metric-ton force.

>> Soyuz 2-1A Overview

Hot-staging occurs four minutes and 47 seconds into the flight with ignition of the Block I third stage at the same moment pyrotechnics fire to separate the spent Block A core after it burned though 91 metric tons of propellant. Delivering 30,400-Kilogram force of thrust, the Kerosene-fueled third stage will burn for just under four minutes, accelerating the stack onto a sub-orbital trajectory. Fregat will separate from the Soyuz booster eight minutes and 49 seconds after liftoff to embark on its complex multi-orbit mission.

>> Flight Timeline and Orbit Info

Fregat will be flying in its 'M' configuration with tank extensions to achieve the performance needed for this mission, carrying 5,250 Kilograms of self-igniting Unsymmetrical Dimethylhydrazine and Nitrogen Tetroxide for consumption by a two-metric-ton S5.92 engine. The upper stage's mission begins shortly after separation with a propellant settling maneuver ahead of ignition of the main engine on a six-and-a-half-minute burn to place the stack into an elliptical parking orbit peaking over 500 Kilometers in altitude.


Photo: Roscosmos

Concluding its first burn, Fregat will coast for half a lap around Earth for an 86-second burn at the apogee of the orbit to serve as circularization, aiming for an orbit of 479 by 523 Kilometers, inclined 97.44 degrees for the separation of the Kanopus V-IK satellite one hour and one minute after liftoff.

Next up will be two main engine burns, both 66 seconds in duration and again spaced by half an orbit in order to achieve a near-circular orbit of 595 x 600 Kilometers for the separation of the five MicroSatellites during a 200-second sequence picking up at T+2 hours and 25 minutes. With the five MicroSats on their way, Fregat will fire up its low-thrust engines for a very slight change of the orbit, targeting 584 x 604 Kilometers for the ejection of 19 of the CubeSats (all except for the Flock 2k satellites).

After dispatching 25 of its passengers, Fregat will be headed back down, targeting a pair of orbit reduction maneuvers three hours and 15 minutes and three hours and 58 minutes into the flight with durations of 86 and 72 seconds to spiral down to an orbit of 465 x 480 Kilometers, 97.0°. What follows will be an extended period of passive flight with separation of the remaining 48 CubeSats planned over a 22.5-minute sequence seven hours and 41 minutes after launch.

The last order of business for Fregat will be a two-minute deorbit maneuver eight hours and 15 minutes after launch, placing the stage onto a sub-orbital trajectory for destructive re-entry over the Indian Ocean.

tnt22

http://spaceflight101.com/soyuz-kanopus-v-ik/kanopus-v-ik/
Цитата
Kanopus V-IK

Kanopus-V-IK is a Russian Remote Earth Sensing Satellite carrying a multi-instrument package for high-resolution imaging, color imaging, multi-spectral data collection and specialized infrared capability - tasked with the collection of data for environmental monitoring, mapping, fire detection, agricultural planning, land use assessments, urban planning and fire detection.
 Скрытый текст:

Photo: Roscosmos

Kanopus builds a constellation of small remote sensing spacecraft, operating alongside the large Resurs satellites that build Russia's primary civilian Earth observation system, however, both Resurs and Kanopus have some overlap with the military and will be called upon when necessary to deliver data for defence ministry purposes.

The Kanopus Program is operated by Roscosmos and data users include the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, Ministry of Natural Resources of the Russian Federation, the Federal Service for Hydrometeorology and Environmental Monitoring, and the Russian Academy of Sciences.


Kanopus V No. 1 Satellite - Image: Roscosmos

The first Kanopus V (Kanopus Vulkan) satellite was launched in July 2012. Designated Kanopus V-1, the satellite had a launch mass of 475 Kilograms and was based on the Kanopus satellite platform, designed specifically for the program. The satellite hosts a panchromatic imaging system achieving a 2.5-meter ground resolution, a full color imaging system with a 12-meter resolution and a multi-spectral imager achieving a 25-meter resolution. The BKA satellite launched alongside the first Kanopus-V satellite was almost identical in design, featuring the same instrument suite.

Kanopus ST-1 carried specialized equipment for ocean and weather research, hosting a microwave radiometer and multispectral camera. Built with Defence Ministry funds, Kanopus-ST was reportedly capable of scanning underwater areas for submarines. The craft launched atop the second Soyuz 2-1v rocket and achieved the planned orbit, but failed to separate from the upper stage due to a malfunction of the separation mechanism. The upper stage-satellite stack re-entered only a few days after launch, rendering the mission a complete loss.


Kanopus V Image of St. Petersburg - Photo: Roscosmos

Kanopus V-IK stands for 'Kanopus-Vulkan-Infra-Krasny' and features the standard Kanopus V equipment with the addition of an infrared imaging payload that can detect hot spots, such as fires and volcanic eruptions, as small as five meters in size.

Kanopus V-IK started out as Kanopus V No. 2 in 2011, the second regular Kanopus Vulkan satellite to be launched with four more to follow before 2020 as well as other members carrying high-resolution, cartography and radar payloads. After the launch of the first Kanopus V satellite, Roscosmos pushed the launch of Kanopus V No. 2 from 2013 into 2015 for the addition of specialized infrared sensor equipment. Named Kanopus V-IK, the satellite ended up slipping throughout 2016 with launch being repeatedly pushed back and eventually ending up in mid-2017.


Image: VNIIEM

Contracted for the development of the Kanopus satellites, Russian company NPP VNIIEM elected to work with Surrey Satellite Technology Ltd. based in the United Kingdom given their experience with small satellites. Under the contract signed in 2007, SSTL is delivering three suites of satellite avionics and software plus technical support, electrical power management and batteries, onboard computers and data handling systems. The company will also provide spacecraft assembly and integration support.

The Kanopus satellite bus hosts a pair of deployable solar arrays, each comprised of three panels for a total orbit average power supply of 300 Watts. The spacecraft host precise attitude determination and control systems featuring star trackers, sun sensors, and inertial measurement systems for attitude determination and reaction wheels as primary attitude actuators.


Photo: Roscosmos

The satellite platform supports precise pointing with an attitude stability of 0.001 degrees per second and a pointing accuracy of 5 arcmin. Imaging at off-nadir angles up to +/-40 degrees can be supported, requiring 2 minutes for a slew from -40° to +40° off-nadir, allowing the satellite to conduct agile imaging operations with quick re-targeting. An onboard GNSS navigation receiver provides the satellite's position with an accuracy of 15 meters for proper geo-tagging of acquired imagery.

The Kanopus satellites have an onboard memory of 24 gigabytes; data downlink is accomplished using an X-Band communications system operating between 8.048 and 8.382 GHz and achieving data rates up to 122.8 Megabits per second.

According to its manufacturer, Kanopus V-IK has a launch mass between 570 and 630 Kilograms of which 191 Kilograms are attributed to the four-instrument payload package. The satellite has an expected service life of five years.


Photo: Roscosmos

The Kanopus V-IK satellite is outfitted with four instruments - the Panchromatic Imaging System (PSS), Multispectral Imaging System (MSS), Multispectral Scanner Unit (MSU-200) and the Multi-Channel Radiometer Complex (MSU-IK-SRM).

PSS, the Panchromatic Imaging System, has the objective of collecting black-and-white imagery at medium to high resolution for environmental monitoring, agriculture, forestry and disaster monitoring. The single-channel instrument hosts a telescope with a 179.75-centimeter focal length, feeding a focal plane with a 1920 by 985-pixel detector, sensitive in the wavelength range of 520 to 850 nanometers. PSS covers a ground swath of 23.3 Kilometers and achieves a resolution of 2.1-meters for nadir imagery.

The MSS Multispectral Imaging System hosts a 35.95-centimeter telescope feeding a 1920 x 985-pixel detector array covering four spectral bands: 540-600, 630-690, 690-720 and 750-860 nanometers, extending from the green wavelengths relevant for vegetation assessments into the red spectrum and into the near infrared.


Photo: Roscosmos

MSU-IK-SRM was added to the second Kanopus satellite to help in hot-spot and fire detection on Earth's surface, aiming to collect imagery of a very large ground swath for a minimal revisit time from the normal Kanopus orbit, enabling the localization of forest fires and other hot spot phenomena for various operational applications.

The instrument covers two channels in the mid- and long-wave infrared spectrum: 3.5-4.1 & 8.4-9.4µm and has a ground swath of 2,000 Kilometers. The operational resolution of the IR imager is 200 x 200 meters, however, a fire as small at 5 x 5 meters within a 200 x 200m frame can be identified by the instrument, allowing a coarse localization of hot spots and fires.

The presence of MSU-200 on the Kanopus V-IK satellite has not been explicitly confirmed, though the instrument is a standard part of the K-V kit. The prototype instrument is tasked with collecting spectral data for land and sea surface assessments, covering a large number of spectral channels between 540 and 860 nanometers and reaching ground resolution of 25 meters across a swath of 250 Kilometers.

The Kanopus V-IK satellite operates from a Sun Synchronous Orbit 510 Kilometers in altitude at an inclination of 97.4 degrees, with a period of 94.8 minutes. Four more Kanopus V satellites are targeting launch by 2019 to establish a constellation of small remote sensing satellites for responsive data collection and rapid revisit time across the globe.

tnt22

http://spaceflight101.com/soyuz-kanopus-v-ik/flight-profile/
Цитата
SoyuzFlight Profile (73 Satellites)

Launch Timeline
 Скрытый текст:

[TH]Time[/TH] [TH]Event[/TH]
T-0:00:20Launch Command
T-0:00:14Preliminary Thrust Level
T-0:00:05To Full Thrust Level
T+0:00:00LIFTOFF
T+0:01:58Booster Separation
T+0:04:45Core Stage Shutdown
T+0:04:473rd Stage Ignition & Staging
T+0:04:49Payload Fairing Jettison
T+0:04:57Aft Section Cover Jettison
T+0:08:483rd Stage Separation
T+0:08:53Fregat First Burn

Burn Duration: 6:36
T+0:15:29Fregat Upper Stage Cutoff
T+0:58:12Fregat Re-Start

Duration: 01:26
T+0:59:41Fregat Shutdown
T+1:01:18Kanopus V-IK Separation
T+1:36:40Fregat Re-Start

Duration: 01:06
T+1:37:46Fregat Shutdown
T+2:21:40Fregat Re-Start

Duration: 01:06
T+2:22:47Fregat Shutdown
T+2:24:54Separation of MicroSats (200 Seconds)
T+2:33:14Separation of 19 CubeSats (1,000 Seconds)
T+3:15:00Fregat Re-Start

Duration: 01:26
T+3:16:26Fregat Shutdown
T+3:57:50Fregat Re-Start

Duration: 01:12
T+3:59:01Fregat Shutdown
T+7:41:34Separation of Flock-2k (1,374 Seconds)
T+8:15:00Fregat Deorbit Burn

Duration: 01:56
T+8:42:00Fregat Re-Entry (Indian Ocean)
Mission Data
 Скрытый текст:
Mission: Soyuz / Kanopus V-IK
 Launch Vehicle: Soyuz  2-1A / Fregat-M
 Launch Site: 31/6 Baikonur Cosmodrome
 Primary Payload: Kanopus V-IK (600kg)
 Secondary Payloads: 5 MicroSats (18-120kg), 67 CubeSats

Launch Date: July 14, 2017
Launch Time: 06:36:49 UTC

Mission Duration: 8 Hours & 42 Minutes
Mission Design: Three-Orbit Mission w/ Deorbit
Orbital Data
 Скрытый текст:
Kanopus V-IK Target Orbit:
 Type: Sun Synchronous Orbit
 Perigee: 478.6 km
 Apogee: 522.5 km
 Inclination: 97.44°

MicroSat Target Orbit:
Type: Sun Synchronous Orbit
 Perigee: 590.1-600.0 km
 Apogee: 600.1-601.5 km
 Inclination: 97.61°
Satellites: Flying Laptop, WNISAT-1R, NORSat-1 & 2, TechnoSat

CubeSat Target Orbit:
Type: Sun Synchronous Orbit
 Perigee: 580.1-587.4 km
 Apogee: 601.0-606.9 km
 Inclination: 97.61-97.62°
Satellites: CICERO-1, 2, 3, Corvus-BC 1 & 2, MKA-N 1 & 2, Mayak, NanoAce, Eight Lemur-2, Iskra-MAI-85, Ecuador-UTE-YuZGU

CubeSat Target Orbit:
Type: Sun Synchronous Orbit
 Perigee: 450.5-482.2 km
 Apogee: 477.4-485.0 km
 Inclination: 97.00-97.01°
Satellites: 48 Doves (Flock-2k)


Image: Glavkosmos

tnt22

Зона затопления Фрегата
NOTAM
ЦитатаYMMM

F2068/17 - ROCKET LAUNCH FROM RUSSIA WILL TAKE PLACE
FLW RECEIVED FROM GOVERNMENT OF RUSSIA: THE RUSSIAN FEDERAL SPACE
AGENCY PLANS TO LAUNCH MISSILE IN THE SPACE AND TO SINK ITS
FRAGMENTES IN THE WATERS OF THE ANTARCTIC OCEAN
PRI LAUNCH 14TH, BACKUP 15, 16, 17TH
CHARACTERISTICS OF IMPACT AREA:
S51 03 E112 27
S41 36 E115 48
S41 55 E116 36
S51 21 E113 06
S51 03 E112 27. SFC - UNL, DAILY 1500/1630, 14 JUL 15:00 2017 UNTIL 17 JUL 16:30
2017. CREATED: 04 JUL 20:53 2017
NOTMAR
ЦитатаHYDROPAC 2402/2017 (75)

SOUTHEASTERN INDIAN OCEAN.
DNC 04.
1. HAZARDOUS OPERATIONS SPACE DEBRIS 1500Z TO 1630Z
   DAILY 14 THRU 17 JUL IN AREA BOUND BY
   51-03S 112-27E, 51-21S 113-06E,
   41-55S 116-36E, 41-36S 115-48E.
2. CANCEL HYDROPAC 2398/17.
3. CANCEL THIS MSG 171730Z JUL 17.


azeast

https://ria.ru/science/20170713/1498398223.html

Казахстанские и российские специалисты усилили меры пожарной безопасности в связи с предстоящим 14 июля запуском с космодрома Байконур ракеты-носителя (РН) "Союз-2.1а" с космическим аппаратом "Канопус-В-ИК", сообщила пресс-служба министерства оборонной и аэрокосмической промышленности Казахстана.

Salo

"Были когда-то и мы рысаками!!!"

tnt22

https://spaceflightnow.com/2017/07/12/soyuz-rolled-out-for-launch-of-multinational-satellite-cluster/
ЦитатаSoyuz rolled out for launch of multinational satellite cluster
July 12, 2017 Stephen Clark

A Soyuz rocket arrived at a launch pad Tuesday in Kazakhstan for liftoff later this week with a satellite to monitor natural disasters and track forest fires from orbit and 72 secondary payloads from Russia, the United States, Germany, Norway and Japan.

The Russian launcher's blastoff is timed for 0636:49 GMT (2:36:49 a.m. EDT; 12:36:49 p.m. Kazakh time) Friday from the Baikonur Cosmodrome in Kazakhstan.

The Fregat upper stage fastened on top of the three-stage Soyuz-2.1a booster will ignite its main engine seven times to deliver the launcher's 73 satellite passengers to three distinct orbits several hundred miles up, then steer the Fregat toward a destructive re-entry over the Indian Ocean more than eight hours after liftoff.
 Скрытый текст:
Friday's launch will deploy modified CubeSats from five California-based companies, two student-built German satellites, two Norwegian maritime tracking and communications satellites, a commercial Japanese microsatellite to map Arctic sea ice, two Earth-imaging CubeSats for the Russian state space corporation -- Roscosmos -- and three nanosatellites developed by Russian students.

The main payload launching Friday is named Kanopus-V-IK, a Russian government satellite equipped with Earth-viewing cameras to map the planet in color to aid emergency responders, crop managers and environmental scientists. The Kanopus-V-IK satellite, which weighs more than a half-ton (approximately 500 kilograms) and is owned by Roscosmos, also carries an infrared sensor to detect and localize the source of wildfires.


Some of the 73 satellites slated to launch on a Russian Soyuz rocket Friday are pictured before encapsulation inside the launcher's payload fairing at the Baikonur Cosmodrome in Kazakhstan. Credit: Glavkosmos

The other 72 satellites stowed aboard the Soyuz rocket range from shoebox- and briefcase-sized CubeSats up to 265 pounds (120 kilograms).

San Francisco-based Planet, owner of more than 100 Dove CubeSats currently looking down on Earth, will add 48 more spacecraft to its fleet with Friday's launch to help the company collect imagery to produce daily global maps.

Eight Lemur CubeSats from Spire Global, another San Francisco company, will blast off in support of weather forecasters, deriving humidity and temperature profiles by measuring GPS navigation signals that pass through Earth's atmosphere.

With Friday's launch, Spire will have sent 49 CubeSats into orbit, but not all of them remain operational.

A competitor of Spire, GeoOptics of Pasadena, California, is launching three more of its CICERO CubeSats for commercial weather forecasting, using the same GPS radio occultation technique as the Lemur satellites. GeoOptics launched its first spacecraft last month on an Indian Polar Satellite Launch Vehicle.

Two Landmapper-BC CubeSats manufactured and owned by Astro Digital, formerly Aquila Space, on Friday's Soyuz flight are the first members of another commercial Earth-imaging constellation. The Landmapper-BC spacecraft, also known as Corvus-BC1 and Corvus-BC2, each weigh around 22 pounds (10 kilograms) and have color and infrared cameras for wide-area imaging.


Astro Digital's two Earth-imaging CubeSats. Credit: Astro Digital

The other U.S. company with a payload awaiting liftoff from Baikonur is Tyvak, a launch services broker and small satellite-builder in Southern California. Tyvak's experimental 11-pound (5-kilogram) NanoACE CubeSat will test an attitude control system, command and data handling system, guidance, navigation and control software and actuators, and visible and infrared cameras.

German university students built two satellites launching Friday, including the 265-pound (120-kilogram) Flying Laptop spacecraft from the University of Stuttgart's Institute of Space Systems.

The Flying Laptop satellite will give students experience in mission operations, take pictures of Earth and look for near-Earth asteroids, validate the performance of a reconfigurable on-board computer, and demonstrate a high-speed optical infrared communications link with a German ground station during its planned two-year mission.

"In addition to the innovative OBC (on-board computer) concept, which is used as the payload on-board computer, several other new technologies are part of the system and will be verified for the first time under space conditions, and in addition, the mission carries out scientific Earth observation objectives using a multispectral camera and receives ship signals with an AIS receiver," said Sabine Klinkner, project director for the Flying Laptop mission at the University of Stuttgart.

She said the Flying Laptop project was funded by the university's small satellite program, the German state of Baden-Württemberg, and with support from the regional space industry. The German Aerospace Center, DLR, paid for the satellite's launch with federal government funds, Klinkner wrote in an email to Spaceflight Now.


Members of the Flying Laptop team pose with their spacecraft before shipment to the launch site in Kazakhstan. Credit: University of Stuttgart

TechnoSat from the Technical University of Berlin will test new nanosatellite components, including a camera, a new reaction wheel system, a star tracker, a transmitter, a fluid dynamic actuator, and commercial laser retro-reflectors. Shaped like an octagonal drum, the TechnoSat satellite weighs around 40 pounds (nearly 20 kilograms) at launch and is funded by the German Federal Ministry for Economic Affairs and Energy.

An experiment sponsored by DLR aboard TechnoSat will detect strikes of tiny space debris particles on the satellite's solar panels to help scientists better understand the density of space junk in low Earth orbit too small to be tracked by existing radars.

Two Norwegian-owned, Canadian-built microsatellites are heading into orbit to track maritime ship traffic.

The briefcase-sized Norsat 1 spacecraft, billed as Norway's first scientific satellite, also carries an instrument developed by the Physical Meteorological Observatory in Switzerland to measure fluctuations in solar radiation arriving at Earth, a key input into Earth's climate that will help scientists better sort human contributions to climate change. A Langmuir probe on Norsat 1 will study the plasma environment in low Earth orbit during the satellite's planned three-year mission.

The Norwegian Space Center -- owner of the Norsat satellites -- rescheduled the launch of Norsat 1 after a faulty attachment bracket kept the craft off a Soyuz rocket flight in April 2016. Norsat 1 was already at the Soyuz launch base in French Guiana when engineers decided it would be unsafe to add the spacecraft to the mission, which took off without Norsat 1 with a large European environmental satellite.

In addition to its vessel detection receiver, Norsat 2 has a VHF data exchange radio to help extend the range of ship-to-shore communications.

Both Norsats were built by the University of Toronto Institute for Aerospace Studies Space Flight Laboratory.

The 95-pound (43-kilogram) WNISAT 1R satellite developed by two Japanese companies -- Weathernews and Axelspace -- is ready to kick off a campaign to observe sea ice in the Arctic, typhoons and volcanic ash plumes.

Five Russian CubeSats are also counting down to liftoff Friday.

Two of the Russian secondary passengers will take off on Earth-observing missions for Roscosmos, and three others come from Russian universities, including a joint project with Ecuador's Universidad Tecnológica Equinoccial.

Friday's rideshare mission was arranged by Glavkosmos, a subsidiary of Roscosmos.

The Dutch company Innovative Solutions in Space accommodated most of the CubeSat payloads inside QuadPack deployers.

Glavkosmos aims to sell more commercial Soyuz medium-lift missions from Russian-operated launch sites. The company lists a launch price of $20 million to $22 million on its website, a cost that could be shared by multiple customers with payloads flying on the same launcher.

Arianespace works with Glavkosmos on commercial Soyuz launches from the Guiana Space Center in South America. Glavkosmos says it acts as a prime contract integrator for all Russian companies involved in Soyuz missions launched from the tropical spaceport in French Guiana.