Solar Probe Plus (Parker Solar Probe) – Delta IV H/Star-48BV – Canaveral SLC-37B – 12.08.2018 в 07:31 UTC

Автор che wi, 06.01.2014 22:46:44

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

tnt22

ЦитироватьParker Solar Probe Instruments: IS☉IS

JHU Applied Physics Laboratory

Опубликовано: 25 июл. 2018 г.

The Integrated Science Investigation of the Sun—IS☉IS, pronounced ee-sis and including the symbol for the Sun in its acronym—on board Parker Solar Probe uses two complementary instruments in one combined scientific investigation to measure particles across a wide range of energies. By measuring electrons, protons and ions, IS☉IS will understand the particles' life cycles—where they came from, how they became accelerated and how they move out from the Sun through interplanetary space The two energetic particle instruments on IS☉IS are called EPI-Lo and EPI-Hi (EPI stands for Energetic Particle Instrument).

IS☉IS is led by Princeton University in Princeton, New Jersey (principal investigator David McComas), and was built largely at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and Caltech, in Pasadena, California, with significant contributions from Southwest Research Institute in San Antonio, Texas, and NASA's Goddard Space Flight Center in Greenbelt, Maryland The IS☉IS Science Operations Center is operated at the University of New Hampshire in Durham.
(2:18 )

tnt22

https://spaceflightnow.com/2018/07/31/solar-probe-moves-into-launch-position-at-cape-canaveral/
ЦитироватьSolar probe moves into launch position at Cape Canaveral
July 31, 2018 | Stephen Clark


Nestled inside the nose cone of its Delta 4-Heavy launcher, Parker Solar Probe departs its processing facility in Titusville, Florida. Credit: Ken Kremer / kenkremer.com / spaceupclose.com

NASA's Parker Solar Probe, fueled and buttoned up for liftoff Aug. 11 on the first mission to fly through the sun's corona, arrived at its launch pad at Cape Canaveral early Tuesday after a convoy trip fr om a nearby fueling and test facility.

Riding a slow-moving over-the-road transporter, the spacecraft, its solid-fueled Star 48BV upper stage, and protective aerodynamic fairing departed the Astrotech spacecraft processing facility in Titusville, Florida, late Monday for an overnight journey to the Complex 37B launch pad at nearby Cape Canaveral Air Force Station.

The convoy arrived at the launch pad before dawn Tuesday, and a heavy-lifting crane hooked to the 63-foot-tall (19-meter) fairing to hoist it atop a Delta 4-Heavy rocket, capping assembly of the launcher ahead of a predawn blastoff scheduled for Aug. 11.

The 45-minute launch window Aug. 11 opens at 3:48 a.m. EDT (0748 GMT), kicking off a 43-minute flight across the Atlantic Ocean before deployment of the 1,424-pound (646-kilogram) Parker Solar Probe spacecraft fr om the Star 48BV upper stage.
Спойлер
"I'm very happy to say that Solar Probe is in the fairing and ... is on top of the Delta 4-Heavy," said Nicky Fox, Parker Solar Probe's project scientist at the Johns Hopkins University Applied Physics Laboratory, which developed the mission for NASA. "It was hoisted up this morning ... I think it's fair to say that Parker Solar Probe is go for the sun."

Named for Eugene Parker, who correctly predicted the existence of the solar wind in 1958, Parker Solar Probe will head for Venus after its Aug. 11 launch, using the planet's gravity to slingshot into a tighter orbit around the sun. Assuming launch occurs Aug. 11, Parker Solar Probe will reach Venus on Oct. 2, then make its first close approach to the sun — or perihelion — on Nov. 5.

During its first solar encounter later this year, Parker Solar Probe will reach a distance of roughly 15 million miles (24.1 million kilometers) from the sun's surface, breaking a record set by the U.S.-German Helios 2 mission, which passed as close as 27 million miles (43.4 million kilometers) from the sun in April 1976.


Artist's concept of Parker Solar Probe. Credit: JHUAPL

Six more Venus flybys will spiral Parker Solar Probe ever-closer to the sun, redirecting the craft's trajectory toward its closest encounter with the sun at a distance of 3.83 million miles (6.16 million kilometers) in 2024, roughly 4 percent the distance of the sun from Earth.

"Venus is very important to us," Fox said. "We actually use Venus to do gravity assists. Not like other missions you've heard about that take energy from the planet to speed up, we actually generously give energy to Venus, and we use Venus to slow us down just a little bit, really to focus our orbit, almost like doing a little handbrake turn and focusing us in towards the sun. We will do 24 petal orbits, coming very close to the sun on one side, going out around the orbit of Venus on the other."

Parker Solar Probe will fly through the corona, a super-heated envelope of plasma surrounding the sun wh ere temperatures soar to millions of degrees. The temperature at the surface of the sun is hundreds of times cooler, but still a blistering 10,000 degrees Fahrenheit (6,000 degrees Celsius).

The corona is also thought by scientists to be the origin of the solar wind, a supersonic stream of charged particles flowing away from the sun in every direction, influencing the entire solar system and driving space weather.

"How is the solar wind accelerated up to millions of mph very quickly in the solar corona? The work that Dr. Parker has laid out is the foundational work for understanding this process, and this is one of the primary goals of the Parker Solar Probe," said Alex Young, associate director for science in the heliophysics division at NASA's Goddard Space Flight Center in Maryland.

"Why does this all matter? We're living in this dynamic sun's atmosphere. We're living in the solar wind streaming by the Earth, streaming by other planets," Young said. "We see the beautiful results with the aurora, but this also creates an incredibly dynamic environment that impacts our technology, makes the environment hostile for astronauts, and in the most extreme cases, can even impact technology and power grids here on Earth."

Parker Solar Probe's arrival at the launch pad is a key milestone in the $1.5 billion mission's launch campaign. In the coming days, ground crews will ensure the spacecraft is correctly attached to the Delta 4-Heavy rocket. Launch rehearsals are also on tap over the next week-and-a-half, according to Andrew Driesman, Parker Solar Probe's project manager at the Johns Hopkins University Applied Physics Laboratory.

"Picture this 63-foot-high fairing on this vehicle moving through the Cape and part of Titusville," Driesman said in an interview. "They arrive at the pad, hook it up to the crane, and lift this nearly 70-foot structure up to the top of the rocket, move it onto the top of the rocket, and then they bolt it on.

"Once we get there, after the mechanical operations are done, one of the first things we'll do is power up the spacecraft and do what we call an aliveness test," Driesman said. "That's to make sure everything was transported safely, and there are no issues with either the spacecraft or the instruments."


Parker Solar Probe on the move late Monday. Credit: Ken Kremer / kenkremer.com / spaceupclose.com

Launch was originally scheduled for July 31, but software reviews and snags encountered during encapsulation of the spacecraft inside the Delta 4-Heavy's payload fairing forced a delay.

The mission's launch period in August is governed by the positions of Earth and Venus in their orbits around the sun. Parker Solar Probe's interplanetary launch period was supposed to close Aug. 19, but trajectory analyses suggest the mission could depart Earth through Aug. 23 and still meet its date with Venus in early October, giving managers an extra four launch opportunities after giving up the first 11 days of the interplanetary launch period.

If further delays keep Parker Solar Probe on Earth after Aug. 23, the next chance to launch the mission will come in May 2019.

But Driesman told Spaceflight Now he is confident the mission will get off the ground in August.

"The operations are proceeding at what I would call a normal pace," he said. "There's always time built in for not getting things right. At this point, we're on track for the 11th (of August) launch date."

Parker Solar Probe's launch campaign got into full swing in April, with the arrival of the spacecraft at the Florida launch base from the Johns Hopkins University Applied Physics Laboratory on April 3. The probe's heat shield arrived a couple of weeks later, and ULA crews transferred the Delta 4-Heavy rocket to the launch pad April 16, followed the next day by the raising of the launcher vertical.

Inside the clean room at Astrotech, technicians installed Parker Solar Probe's power-generating solar arrays and heat shield over the past few months. The solar arrays have a custom design to withstand the blistering heat and sunlight the power generators will see near the sun, using a unique water cooling system to stay within temperature tolerances.

Workers also bolted on Parker Solar Probe's heat shield, a 4.5-inch thick (11.4-centimeter) piece of carbon composite that stretches around 8 feet (nearly 2.5 meters) wide. The heat shield, or thermal protection system, will take the brunt of the heat during the probe's close-up encounters with the sun, keeping most of the spacecraft — except for the solar arrays and a few scientific sensors — a bit above room temperature.

The spacecraft carries autonomous control software to ensure temperature-sensitive components don't get too hot, using inputs from temperature sensors to gauge wh ere the probe should be pointed. Some of the sensors failed during testing, so engineers added a redundant set to the spacecraft, according to Fox.

Parker Solar Probe's team at Astrotech loaded around 176 pounds (80 kilograms) of hydrazine into the craft's monopropellant propulsion system July 7. The probe will use the fuel and 12 tiny rocket thrusters to tweak its trajectory over its seven-year-plus mission, and help unload momentum from four spinning reaction wheels located inside the spacecraft's main body, which will control the orbiter's pointing.


Parker Solar Probe inside the clean room at Astrotech. The white ceramic coating on the probe's carbon heat shield is visible at the top of the spacecraft. Credit: NASA/JHUAPL/Ed Whitman

Once fueled, Parker Solar Probe was lifted on top of its Star 48BV rocket motor, which will act as a third stage during launch. Fitted with a vectoring nozzle, the solid-fueled kick stage was built by Northrop Grumman Innovation Systems, formerly known as Orbital ATK.

The Star 48BV motor will fire for approximately 89 seconds after separation from the Delta 4-Heavy's second stage, giving Parker Solar Probe an extra velocity boost. The Delta 4-Heavy's triple-core first stage, powered by three RS-68A main engines producing 2.1 million pounds of thrust, will give the mission its initial lift, followed by two firings of an RL10 upper stage engine before the Star 48BV burn.

"Since we're going so close to the sun, we have to lose a lot of energy, a lot of angular momentum, associated with the Earth's orbit," said Jim Kinnison, Parker Solar Probe's mission system engineer, in an interview with Spaceflight Now. "To do that, we need a really big rocket that can provide us with a high (escape velocity). The Delta 4-Heavy was the best we could get, but even that wasn't sufficient. We still need a third stage to provide even more of a boost for us. The third stage will do that, but we're also targeting Venus for gravity assists to lose even more."

During its closest approaches in 2024 and 2025, Parker Solar Probe will experience 478 times the sunlight present at Earth, which orbits around 93 million miles (150 kilometers) from the sun. The spacecraft's velocity will jump to roughly 430,000 mph — 120 miles per second or nearly 700,000 kilometers per hour — during its final perihelion passages, setting a new mark for the fastest human-made object in history.

SpaceX's Falcon Heavy rocket can carry heavier cargo than the Delta 4-Heavy, but NASA would not commit to launching a high-priority science probe on an unproven booster. At the time of NASA's selection of the Delta 4-Heavy rocket for the Parker Solar Probe mission in early 2015, the Falcon Heavy was still three years from its first test flight.


Parker Solar Probe and its Star 48BV kick stage are pictured inside one-half of the Delta 4-Heavy rocket's payload shroud earlier this month at the Astrotech processing facility. Credit: NASA/JHUAPL/Ed Whitman

With the spacecraft now on its Delta 4-Heavy launcher, the ULA and Parker Solar Probe teams plan to conduct an integrated systems test, a checkout to verify proper electrical connections between the rocket and payload. Engineers also plan to condition Parker Solar Probe's battery to maximize its lifetime, according to Driesman.

"We (will) go through basically a verification of all the flight software and parameters," Driesman said. "We'll dump every single bit off the spacecraft and compare it to what it should be, and make sure that we've got a good load of not only the flight software, but the parameters themselves."

There are also practice runs for the launch team planned. ULA's controllers already accomplished two countdown rehearsals in early July, during which they filled the Delta 4-Heavy with liquid hydrogen and liquid oxygen, then drained the cryogenic propellants from the rocket.

Technicians will also enter the Delta 4-Heavy's payload shroud to take off "remove-before-flight" covers protecting sensitive scientific instrumentation.

"We do some further launch rehearsals to make sure the team is as ready as the spacecraft is," Driesman said. "And then we'll go into the fairing. There are just a few red tag covers on-board that cover some sensitive instruments. We'll crawl into the fairing and remove the red tag covers, and then we're pretty much, at that point, ready to launch."
[свернуть]

tnt22

ЦитироватьEugene Parker on Parker Solar Probe and Solar Science

JHU Applied Physics Laboratory

Опубликовано: 31 июл. 2018 г.

Eugene Parker, professor emeritus of physics at the University of Chicago, and namesake of NASA's Parker Solar Probe mission, discusses his work in solar physics and the spacecraft that bears his name with Parker Solar Probe project scientist Nicola Fox, from the Johns Hopkins Applied Physics Lab.

Parker Solar Probe is part of NASA's Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star flight program is managed by the agency's Goddard Space Flight Center in Greenbelt, Maryland, for NASA's Science Mission Directorate in Washington. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, manages the mission for NASA. APL designed and built the spacecraft and will also operate it.
(3:31)

tnt22

http://tass.ru/kosmos/5418530
ЦитироватьВ NASA сообщили о готовности к запуску зонда для исследования Солнца

Космос | 1 августа, 8:18 UTC+3


Зонд Паркера
©  NASA/Johns Hopkins APL/Ed Whitman

ВАШИНГТОН, 1 августа. /Корр. ТАСС Дмитрий Кирсанов/. Специалисты Национального управления США по аэронавтике и исследованию космического пространства (NASA) установили на ракету-носитель автоматическую межпланетную станцию, предназначенную для исследования Солнца. Об этом сообщила во вторник на брифинге для журналистов координатор этого проекта NASA Никола Фокс.

"Я чрезвычайна счастлива сказать, что зонд заключен в обтекатель. По состоянию на полдень сегодняшнего дня <...> обтекатель установлен на верхушку тяжелой ракеты Delta IV. Он был поднят этим утром. <...> Зонд Паркера готов лететь к Солнцу", - заявила специалист из Лаборатории прикладной физики Университета Джонса Гопкинса.

Стартовое окно для запуска станции открывается 11 августа. Закрывается оно 19 августа. Дата старта несколько раз сдвигалась за последние недели, в том числе для дополнительного тестирования программного обеспечения систем зонда.

Последние приготовления
Спойлер
Весной аппарат был переброшен к космодрому на мысе Канаверал (штат Флорида), с которого ему предстоит стартовать.

В ночь со 2 на 3 апреля зонд был перевезен из входящего в структуру NASA Центра космических полетов имени Годдарда в Гринбелте (штат Мэриленд) на расположенную поблизости базу ВВС и ВМС США Эндрюс. Оттуда аппарат на борту военно-транспортного самолета C-17 доставили на сборочное предприятие компании Astrotech Space Operations, соседствующее с космодромом на мысе Канаверал. Затем зонд со всей предосторожностью извлекли из контейнера, в котором он перебрасывался из Мэриленда во Флориду.

На объекте фирмы Astrotech Space Operations у космодрома на мысе Канаверал станция проходила последние всеобъемлющие испытания. Именно там ее "упаковали" в специальное термозащитное покрытие, укрыли обтекателем и установили на носителе.

Условия, "приближенные к боевым"

С января на протяжении почти двух месяцев станцию подвергали температурным испытаниях в вакууме. Эти тесты шли в Центре имени Годдарда, где зонд, который по размерам сопоставим с небольшим автомобилем, поместили в вакуумную камеру высотой примерно 12 м.

Инженеры сначала проверяли, выдерживают ли зонд и его "начинка" низкую температуру - до минус 292 градусов Фаренгейта (минус 180 Цельсия). Затем ее постепенно увеличивали, чтобы посмотреть, как на станцию воздействует экстремально высокая температура. Потом специалисты чередовали такой перепад температур, имитируя условия полета в космическом пространстве.

Детали миссии

Планируется, что в ноябре зонд приблизится к Солнцу на расстояние в 6,4 млн км. Это означает, что аппарат будет находиться в пределах короны Солнца, то есть внешних слоев его атмосферы, где температура может достигать 500 тыс. кельвинов (около 500 тыс. градусов Цельсия) и даже нескольких миллионов кельвинов.

По замыслу американских ученых, в период по июнь 2025 года зонд совершит 24 витка по орбите вокруг Солнца, разгоняясь до скорости 724 тыс. км в час. На каждый такой виток у него будет уходить 88 дней.

На борту аппарата стоимостью порядка $1,5 млрд будет находиться четыре комплекта научных инструментов. При помощи этой аппаратуры специалисты рассчитывают, в частности, осуществить различные измерения солнечной радиации. Наряду с этим зонд должен будет передать фотоснимки, которые станут первыми, сделанными в пределах солнечной короны. Оборудование зонда будет защищено оболочкой из углепластика толщиной 11,43 см, позволяющей выдержать температуру до примерно 1,4 тыс. градусов Цельсия.

Как признала в июне прошлого года Никола Фокс, проект удалось реализовать только теперь благодаря появлению новых материалов, использованных в первую очередь при создании термостойкого щита зонда. Станция получит и новые панели солнечных батарей, уточнила Фокс. "Мы наконец прикоснемся к Солнцу", - эмоционально сказала о курируемом проекте эксперт. По ее выражению, зонд поможет ученым понять, "как работает Солнце".

Значение проекта

NASA обещает, что миссия произведет революцию в представлении человека о процессах, протекающих на Солнце. Претворение в жизнь намеченных планов позволит внести "фундаментальный вклад" в понимание причин "нагревания солнечной короны", а также возникновения солнечного ветра (потока ионизированных частиц, истекающего из солнечной короны) и "ответить на критически важные вопросы в гелиофизике, которые уже на протяжении нескольких десятилетий имеют высший приоритет", убеждено NASA. Информация с борта аппарата, по мнению его специалистов, будет иметь огромную ценность и с точки зрения подготовки дальнейших пилотируемых полетов за пределы Земли, поскольку позволит прогнозировать "радиационную обстановку, в которой предстоит работать и жить будущим покорителям космоса".

Зонд назван в честь американского астрофизика Юджина Паркера, которому минувшим летом исполнилось 90 лет. Несмотря на свой возраст, он до сих пор ведет научную деятельность в Университете Чикаго (штат Иллинойс).

Паркер стал одним из первых в мире специалистов, занимавшихся исследованиями солнечного ветра. С 1967 года он является членом Национальной академии наук США.

Предполагается, что зонд Паркера подлетит в семь раз ближе к Солнцу, чем какой-либо другой из космических аппаратов, ранее отправлявшихся человеком.
[свернуть]

tnt22

https://www.princeton.edu/news/2018/07/30/princeton-space-meet-isis-heading-touch-sun
ЦитироватьPrinceton in space: Meet ISʘIS, heading to touch the sun

Liz Fuller-Wright, Office of Communications
July 30, 2018 10 a.m.

Within the next month, NASA's Parker Solar Probe will lift off fr om Cape Canaveral, heading for a rendezvous with the sun. Onboard will be ISʘIS, an instrument suite led by Princeton's David McComas to measure energetic particles fr om the sun's corona and the solar wind.

McComas, a professor of astrophysical sciences and the vice president of the Princeton Plasma Physics Laboratory, is the principal investigator for the ISʘIS mission. The Integrated Science Investigation of the Sun uses the symbol of the sun (ʘ) in the middle of its acronym, which is pronounced like the Egyptian goddess Isis is pronounced in Arabic: "EEE-sys." By measuring electrons, protons and ions, ISʘIS will equip researchers to understand the particles' lifecycles — where they originate, how they are accelerated, and how they move out fr om the sun through interplanetary space. 

Parker Solar Probe, with a launch window between Aug. 11 and 19, is designed to plunge repeatedly into the innermost regions of the solar system wh ere the sun's million-degree atmosphere, or corona, begins its outward expansion to produce the supersonic solar wind. At its closest approach, it will be less than 4 million miles away from the surface of the sun, inside the sun's atmosphere, measuring and sampling particles in situ.
Спойлер
It will pass close enough to the sun to watch the solar wind speed up from subsonic to supersonic, and it will fly though the birthplace of the highest-energy solar particles. In addition, Parker Solar Probe will be the fastest human-made object ever, traveling at 430,000 miles per hour. That's fast enough to get from Princeton to New York City in half a second.

"It's a super exciting mission," said McComas. "Almost everybody has seen an eclipse, or at least an eclipse picture, and you see that hairy stuff around the sun when it's blocked by the moon — that's the corona. Our spacecraft will fly inside the corona, just incredibly close, and do it over and over and over again, so you can sample different solar wind environments. The sun is highly variable, so solar wind can be really fast, or slow, with transient solar particle events or more steady fluxes, so having lots and lots of re-visits is really great for the science."


EPI-Lo is one of the two instruments that make up ISʘIS, an instrument suite on NASA's Parker Solar Probe, which will pass closer to the sun than any mission in human history. ISʘIS will take dozens of passes through the sun's million-degree atmosphere, or corona, wh ere EPI-Lo's 80 tiny openings will measure the spectra of the lower-energy particles streaming from the sun.
Photo courtesy of NASA/Johns Hopkins APL/Ed Whitman

Measurements from the ISʘIS instruments will allow McComas' team of researchers to explore energetic particles dynamics, including their origins, their acceleration as they are buffeted by the shockwaves and turbulence of the solar atmosphere, and their transport from the corona out to the heliosphere, the bubble-shaped region that surrounds the solar system.

The two ISʘIS Energetic Particle Instruments measure lower (EPI-Lo) and higher (EPI-Hi) energy particles. EPI-Lo has 80 tiny openings that sample nearly a complete hemisphere, measuring ions and ion composition from about 20 keV/nucleon–15 MeV total energy and electrons from about 25–1000 keV. "To be able to instantaneously view such particles over half the sky, basically, has never been done before," said McComas.

"This is not a spinning spacecraft, so it's hard to get a big field of view," he said. "You can't predict exactly wh ere the particles will be coming in. We want to measure the distribution of particles that come in different intensities, from different directions."

EPI-Lo measures the spectra of electrons and ions and identifies carbon, oxygen, neon, magnesium, silicon, iron and two isotopes of helium, He-3 and He-4. Distinguishing between helium isotopes will help determine which of several theorized mechanisms caused the particles' acceleration.

An ion that enters EPI-Lo through one of the 80 dime-sized openings passes through two carbon-polyimide-aluminum foils before encountering a solid-state detector. Upon impact, the foils produce electrons that are measured by a microchannel plate. The sensors can identify the species of the particles by using the amount of energy left by the ion's impact on the detector and the time it takes the ions to pass through the sensors.

EPI-Hi combines three particle sensors composed of stacked layers of detectors to measure ions from about 1–200 MeV/nucleon and electrons from about 0.5–6 MeV. It uses a series of ultra-thin silicon wafers to detect the trajectory of the particles and their species. At the probe's closest approach to the sun, EPI-Hi will be able to detect up to 100,000 particles per second.

These high-energy particles are moving incredibly fast, McComas said. They are much, much faster than the satellite, which will be whipping through space at almost half a million miles per hour. Considering how much faster the energetic particles are, "We're effectively standing still," he said. Counting and measuring solar energetic particles is less like scooping up pebbles than like sampling rain as a hurricane blows past, or measuring dust as a tornado whirls by.


EPI-Hi, the other instrument making up ISʘIS, combines three particle sensors to detect the trajectory and species of high-energy particles ejected from the sun. At its closest approach to the sun, EPI-Hi will be able to detect up to 100,000 particles per second.
Photo courtesy of NASA/Johns Hopkins APL/Ed Whitman

EPI-Hi has evolved from a tried-and-true design, said McComas, and EPI-Lo is even more innovative.

"It's a really interesting balancing act," he said. "New designs have some risk to them, but you absolutely cannot fail in space. It's not like any other area. You can't go fix it, so it's got to work right, and you have to have really tight system engineering — but if you're not taking some level of risk in your design and development and your measurements, you're not pushing the forefront of science."

ISʘIS is also designed to reveal previously unknown features of the inner heliosphere, which stretches from the sun's corona out to the orbit of Mercury. ISʘIS instruments will observe continuously when the spacecraft is within 23 million miles of the sun (0.25 AU) with a high data collection rate. When it is farther from the sun, it will operate in a low-rate science mode whenever it can, to capture as complete a record as possible of the solar energetic particle environment and provide calibration and continuity for measurements closer in to the sun.

Together, ISʘIS' unique observations will enable scientists to discover, untangle and understand the important physical processes that govern energetic particles in the innermost regions of our heliosphere, for the first time.

"A lot of what we haven't been able to understand about these energetic particles has to do with the fact that we're so far from the source," McComas said. "It's hard for us to disentangle effects from the source versus acceleration and transport processes." He described a solar storm observed in 1980 by the Helios-1 spacecraft, located about halfway between the Earth and the sun, which detected five distinct bursts of electrons and helium ions, while another instrument near Earth only detected a single particle event.

"Understanding energetic particles is really important, not just scientifically, but also because they affect space weather, which can impact GPS, telecommunications, and all kinds of practical things," McComas said. "They can destroy the functioning of spacecraft in orbit. They also cause the aurora borealis, which are beautiful to see, but when they're raining on a spacecraft, it's less good."

By disentangling the complicated questions around the origin, acceleration and transport of solar energetic particles, ISʘIS will "help us be much smarter about looking at energetic particle data measured near Earth and interpreting what it means back on the sun, how the particles got there, and how to deal with them as a part of space weather," McComas said. "This is a really critical mission."
[свернуть]

tnt22

ЦитироватьWISPR: Teaser

USNRL

Опубликовано: 25 июл. 2018 г.

The Wide-Field Imager for Solar Probe (WISPR) is an instrument that is on the NASA's Parker Solar Probe. The Parker Solar probe is a revolutionary mission, which will go deep in the heart of the sun's corona.
(1:10)

tnt22

https://blogs.nasa.gov/parkersolarprobe/2018/08/01/parker-solar-probe-attached-to-ula-delta-iv-heavy-prepped-for-mission-to-the-sun/
ЦитироватьParker Solar Probe Attached to ULA Delta IV Heavy, Prepped for Mission to the Sun

Linda Herridge
Posted Aug 1, 2018 at 3:31 pm


An artist rendition of NASA's Parker Solar Probe observing the Sun. Image credit: NASA/Johns Hopkins APL/Steve Gribben

NASA's Parker Solar Probe, secured inside its payload fairing, was moved July 30, 2018, from nearby Astrotech Space Operations in Titusville, Florida, to Space Launch Complex 37 on Cape Canaveral Air Force Station. The following day, the spacecraft was lifted and attached to the top of the United Launch Alliance Delta IV Heavy rocket in the Vertical Integration Facility.

Parker Solar Probe is being prepared for its launch, on its mission to "touch" the Sun. The spacecraft will travel directly into the Sun's atmosphere, about 4 million miles from its surface — and more than seven times closer than any spacecraft has come before, thanks to its innovative Thermal Protection System. The mission will perform the closest-ever observations of a star when it travels through the Sun's outer atmosphere, called the corona. The mission will rely on measurements and imaging to revolutionize our understanding of the corona and how processes there ultimately affect near-Earth space.

tnt22

https://blogs.nasa.gov/parkersolarprobe/2018/08/02/parker-solar-probe-launch-window-extended-to-august-23/
ЦитироватьParker Solar Probe Launch Window Extended to August 23

Sarah Frazier
Posted Aug 2, 2018 at 11:31 am

NASA and its mission partners have analyzed and approved an extended launch window for Parker Solar Probe until Aug. 23, 2018 (previously Aug. 19). The spacecraft is scheduled to launch no earlier than Aug. 11, 2018, at 3:48 a.m. with a window of 45 minutes.

Parker Solar Probe will launch from Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida aboard on a United Launch Alliance Delta IV Heavy rocket.

tnt22

ЦитироватьEmre Kelly‏Подлинная учетная запись @EmreKelly 3 ч. назад

Now firmly on Eastern Range calendar: @ULAlaunch Delta IV Heavy with NASA's Parker Solar Probe slated for 0348 ET (0748 UTC) liftoff on 8/11 from CCAFS Launch Complex 37. Teams have 45-minute window. Also, overall launch window for PSP now extended to 8/23 (previously 8/19).


tnt22

https://www.cfa.harvard.edu/news/2018-15
ЦитироватьReady for Its Day in the Sun: The SWEAP Investigation

Release No.: 2018-15
For Release: Friday, August 3, 2018 - 1:00pm



Cambridge, MA - When NASA's Parker Solar Probe launches into space from the Kennedy Space Center, it will begin its journey to the Sun, our nearest star. The Parker Solar Probe will travel almost 90 million miles and eventually enter through the Sun's outer atmosphere to encounter a dangerous environment of intense heat and solar radiation. During this harrowing journey, it will fly closer to the Sun than any other human-made object.

To revolutionize our understanding of our most important and life-sustaining star, scientists and engineers have built a suite of instruments aboard the Parker Solar Probe to conduct different experiments. Some of these instruments will be protected by a thick carbon-composite heat shield. However, others will be more exposed.

The Solar Wind Electrons Alphas and Protons (SWEAP) investigation is the set of instruments that will directly measure the hot ionized gas in the solar atmosphere during the solar encounters. A key instrument on SWEAP called the Solar Probe Cup (SPC) was built at the Smithsonian Astrophysical Observatory (SAO) in Cambridge, Mass.
Спойлер
The SPC is a small metal device that will peer around the protective heat shield of the spacecraft directly at the Sun. It will face some of the most extreme conditions ever encountered by a scientific instrument, and allow a sample of the Sun's atmosphere to be swept up for the first time.

The SPC uses high voltages to determine what type of particles can enter, which is a way of measuring the energy of the particle. This is crucial information for probing the wind of hot ionized gas that is constantly produced by the Sun. As the spacecraft flies towards the Sun for an encounter, the wind is directed straight into the cup. Without the SPC, Parker Solar Probe would miss most of what is in between Earth and the Sun. This unique probe of the solar wind is important for scientists to better understand space weather, which is responsible for effects that range from endangering astronauts on space walks to impacting the electronics in communications satellites.

The Parker Solar Probe spacecraft, about the size of a small car, will travel towards the Sun's atmosphere at speeds of about 430,000 mph (700,000 km/hr), becoming the fastest human-made object. Eventually, Parker Solar Probe will enter an orbit that approaches to within only 4 million miles from the star's surface. (For context, the Earth averages a distance of about 93 million miles from the Sun during its elliptical orbit. Or, to put it another way, the spacecraft will travel about 96% of the way from the Earth to the Sun.) Parker Solar Probe, which will be carried into space by a Delta-IV Heavy rocket, is currently scheduled to launch on August 11, 2018.

The SWEAP Team is led by Justin Kasper currently at the University of Michigan (and currently an SAO Research Associate). On the SWEAP Investigation, SAO partners with team members from University of California, Berkeley Space Sciences Laboratory, the NASA Marshall Space Flight Center, the University of Alabama Huntsville, NASA Goddard Space Flight Center, Los Alamos National Laboratory, and the Massachusetts Institute of Technology. SAO built the SPC (Instrument Scientist: Tony Case), leads the Science Operations Center (Head of Science Operations: Kelly Korreck), and manages the overall SWEAP program.
[свернуть]

tnt22

ЦитироватьDelta IV Parker Solar Probe: Integrating the Third Stage

United Launch Alliance

Опубликовано: 4 авг. 2018 г.

ULA Systems Engineer Patrick Moore has been working on the Parker Solar Probe mission for the past three years, working with Northrop Grumman Innovation Services to integrate the third stage that will offer additional performance. You'll also hear Moore on launch day doing flight commentary after liftoff.
(2:44)

tnt22

https://nasa.tumblr.com/post/176450633409/tools-of-the-trade-how-parker-solar-probe-will
ЦитироватьTools of the Trade: How Parker Solar Probe Will Study the Sun

Our Parker Solar Probe will get closer to the Sun than any spacecraft has ever gone – it will fly right through the Sun's corona, part of the Sun's atmosphere.

This spacecraft is full of cutting-edge technology, from its heat shield down to its guidance and control systems. It also carries four suites of advanced instruments designed to study the Sun in a multitude of ways.  

1. Measuring particles

Two of Parker Solar Probe's instrument suites are focused on measuring particles – electrons and ions – within the corona.

One of these particle-measuring instrument suites is SWEAP (Solar Wind Electrons Alphas and Protons). SWEAP counts the most common particles in the solar wind – the Sun's constant outflow of material – and measures their properties, like velocity, density and temperature. Gathering this information about solar wind particles will help scientists better understand why the solar wind reaches supersonic speeds and exactly which part of the Sun the particles come fr om.

One instrument in the SWEAP suite is the Solar Probe Cup. Most of the instruments on Parker Solar Probe stay safe and cool in the shadow of the heat shield, but the Solar Probe Cup is one of the few that sticks out. That's so it can capture and measure particles streaming straight out from the Sun, and it had to go through some intense testing to get ready for this position in the Sun's incredibly hot corona.

Credit: Levi Hutmacher/Michigan Engineering

The ISʘIS suite (pronounced EE-sis, and including the symbol for the Sun in its acronym) also measures particles. ISʘIS is short for Integrated Science Investigation of the Sun, and this instrument suite measures particles that move faster – and therefore have more energy – than the solar wind.

These measurements will help scientists understand these particles' lifecycles – wh ere they came from, how they got to be traveling so fast (these particles can reach speeds more than half the speed of light!) and what path they take as they travel away from the Sun and into interplanetary space.

2. Taking pictures – but not of the Sun's surface.

WISPR (Wide-Field Imager for Parker Solar Probe) has the only two cameras on Parker Solar Probe – but they're not pointed directly at the Sun. Instead, WISPR looks out the side of the spacecraft, in the direction it's traveling, looking at the space Parker Solar Probe is about to fly through. From that vantage point, WISPR captures images of structures within the corona like coronal mass ejections, or CMEs. CMEs are clouds of solar material that occasionally explode from the Sun at millions of miles per hour. Because this solar material is magnetized, CMEs can trigger geomagnetic storms when they reach Earth – which, in turn, can cause effects like auroras and even, in extreme cases, power outages.  

Right now, our observations of events like these come from satellites orbiting near Earth, so WISPR will give us a whole new perspective. And, scientists will be able to combine WISPR's images with Parker Solar Probe's direct particle measurements to get a better idea of how these structures change as they travel.

3. Studying electric & magnetic fields

The FIELDS instrument suite is appropriately named: It's what scientists will use to study the electric and magnetic fields in the corona.

Electric and magnetic fields are key to understanding what happens, not only on the Sun, but throughout space, because they are the primary driver accelerating charged particles. In particular, a process called magnetic reconnection – when magnetic field lines explosively realign, sending particles rocketing away at incredible speeds – is thought to drive solar explosions, as well as space weather effects on Earth, like the aurora. 

FIELDS measures electric and magnetic field at high time resolution, meaning it takes lots of measurements in a short amount of time, to track these processes and shed some light on the mechanics underlying the Sun's behavior. FIELDS' measurements are precisely synced up with those of the SWEAP suite (one of the sets of instruments studying particles) so that scientists can match up the immediate effects that electric and magnetic fields have on the material of the solar wind.

Parker Solar Probe launches summer 2018 on its mission to study the Sun.

Jul 30th, 2018

tnt22

NOTMAR
ЦитироватьNAVAREA IV 626/2018 (GEN)

NORTH ATLANTIC.
FLORIDA.
1. HAZARDOUS OPERATIONS, ROCKET LAUNCHING
   110733Z TO 110924Z AUG, ALTERNATE
   120731Z TO 120922Z AUG IN AREAS BOUND BY:
   A. 28-35N 080-37W, 28-39N 080-34W,
   28-35N 079-12W, 28-29N 079-12W,
   28-27N 080-14W, 28-26N 080-32W
   28-29N 080-37W.
   B. 28-40N 072-14W, 28-40N 070-24W,
   28-15N 069-34W, 27-40N 069-44W,
   27-50N 072-23W, 28-20N 072-34W.
   C. 23-30N 043-49W, 22-31N 040-08W,
   21-10N 037-08W, 20-49N 037-28W,
   21-40N 040-38W, 23-00N 043-58W.
2. CANCEL THIS MSG 121022Z AUG 18.

( 060327Z AUG 2018 )

tnt22

Предварительное расписание трансляций НАСА

https://www.nasa.gov/multimedia/nasatv/schedule.html
ЦитироватьNASA Television Upcoming Events

Watch NASA TV

All times Eastern

AUGUST

August 9, Thursday
1 p.m. - Parker Solar Probe Pre-Launch Mission Briefing (All Channels)

August 10, Friday
6 a.m. – Live interviews from Kennedy Space Center on upcoming launch of Parker Solar Probe (All Channels)
6:30 p.m. – NASA Edge: Live Tower Rollback for Parker Solar Probe (All Channels)
7:30 p.m. – Sunset Show: How Parker Solar Probe helps NASA – Live from Kennedy Space Center (All Channels)

August 11, Saturday
3:15 a.m. - Parker Solar Probe Launch Coverage (launch window opens at 3:33 a.m.; launch targeted for 3:48 a.m.) (All Channels)
TBD - Parker Solar Probe Post-Launch News Briefing (All Channels)

tnt22

ЦитироватьParker Solar Probe Instruments: FIELDS

JHU Applied Physics Laboratory

Опубликовано: 2 авг. 2018 г.

Surveyor of the invisible forces, the FIELDS instrument suite captures the scale and shape of electric and magnetic fields in the Sun's atmosphere. FIELDS measures waves and turbulence in the inner heliosphere with high time resolution to understand the fields associated with waves, shocks and magnetic reconnection, a process by which magnetic field lines explosively realign FIELDS was designed, built, and is operated by a team lead by the Space Sciences Laboratory at the University of California, Berkeley (principal investigator Stuart D. Bale)
(2:14)

tnt22

http://news.berkeley.edu/2018/08/06/space-probe-to-plunge-into-fiery-corona-of-the-sun/
ЦитироватьSpace probe to plunge into fiery corona of the sun

By Robert Sanders, Media relations | AUGUST 6, 2018

On August 11, NASA plans to launch Earth's first spacecraft to venture inside the orbits of Venus and Mercury to touch the very edge of the sun's fiery corona.

Outfitted with instruments designed and built at the University of California, Berkeley, the Parker Solar Probe will achieve a goal that space scientists have dreamed about for decades: to get close enough to the sun to learn how the turbulent surface we see fr om Earth dumps its energy into the corona and heats it to nearly 2 million degrees Fahrenheit, spawning the solar wind that continually bombards our planet.
Спойлер

(video 2:14)
UC Berkeley physicist Stuart Bale discusses the FIELDS instruments aboard the Parker Solar Probe. Designed and built at the Space Sciences Laboratory, the instruments will measure electric and magnetic fields in the outer atmosphere of the sun to understand the corona and solar wind. (Applied Physics Laboratory video, Johns Hopkins University)

"This is a piece of heliophysics science we all really wanted for a long time, since the 1950s," said Stuart Bale, a UC Berkeley professor of physics, former director of the campus's Space Sciences Laboratory and one of four principal investigators for the instruments aboard the mission. "For me personally, I've been working on the probe since it was approved in 2010, but I really spent a large part of my career getting ready for it."

The solar probe will travel faster than any spacecraft in history, at its peak reaching 430,000 miles per hour, and will be only four-and-a-half solar diameters, or 3.8 million miles, above the solar surface at its closet approach to the sun around 2024. The probe is equipped with a heat shield to protect its sensors fr om the sun's heat, which could reach 2,500 degrees Fahrenheit, nearly hot enough to melt steel.


Stuart Bale (left) and Keith Goetz of the University of Minnesota in the clean room last month conducting final checks to make their instrument ready for flight aboard the Parker Solar Probe.

At this distance, the solar probe will be within a region wh ere electrons and ionized atoms – mostly hydrogen ions, or protons, and helium ions, called alpha particles – are accelerated and shot out toward the planets at high speed.

When these ions, called the solar wind, hit Earth, they interact with Earth's magnetic fields and generate the northern and southern lights as well as storms in the outermost atmosphere that interfere with radio communications and satellite operations. Accelerated to higher speeds, so-called "solar energetic" particles can pose a hazard to astronauts.

Scientists still do not know how the solar wind ions are accelerated, or why the ions and electrons in the corona are so much hotter, about 1.7 million degrees Fahrenheit, than the surface of the sun, which is a relatively cool 10,000 degrees Fahrenheit. The Parker Solar Probe could answer those questions, and help scientists on Earth forecast the large eruptions from the sun that pose the greatest peril to our spacecraft and communications systems.

Follow the magnetic fields

FIELDS, a suite of instruments built at UC Berkeley's Space Sciences Laboratory, is one of four instrument packages aboard the probe. With the help of a six-foot boom projecting in the direction the spacecraft is moving, it will measure the electric and magnetic fields in the corona, which will tell scientists the total energy streaming outward from the sun.


(video 3:28)
In defiance of all logic, the sun's atmosphere gets much, much hotter farther from its blazing surface. Learn how astronomers first discovered evidence for this mystery during an eclipse in the 1800s, and what scientists today think could explain it. (NASA Godddard video)

These measurements will test one theory of how the sun heats the corona: by jiggling the magnetic field lines. The strong magnetic field of the sun stretches out far into space, but the magnetic field lines are anchored in surface regions that constantly move around because of convection below, like boiling water. The constant movement of the base of the magnetic field lines creates waves that travel outward along the lines, just as jiggling the end of a long rope sends waves to the other end. Somehow, these so-called Alfvén waves accelerate particles to high speeds and fling them into space.

"If the wave-driven model is correct, then I think our measurements will be the fundamental measurements on the mission," Bale said.

The other popular theory is that tiny flares called nanoflares all over the surface of the sun produce magnetic fields that cross, reconnect and fling disconnected loops of magnetic field into space, accelerating ions along with it. This was first proposed in 1987 by Eugene Parker, after whom the solar probe is named. Now 91, Parker predicted the existence of and named the solar wind in the 1950s.

Radio antennas on the FIELDS package will look for radio waves created by nanoflares, which have yet to be detected, while another package of instruments, SWEAP (Solar Wind Electrons Alphas and Protons), will record the speed of solar wind electrons, protons and alpha particles as they whiz by the probe. Correlating nanoflare or microflare activity with the flux of particles streaming from the sun could confirm the magnetic reconnection theory. SWEAP is led by the University of Michigan and the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, though much of the instrument was designed and built at the Space Sciences Laboratory at UC Berkeley.


The surface of the sun, or photosphere, is about 10,000 degrees Fahrenheit, but the region through which the solar probe flies, the corona, is 2 million degrees. Scientists want to know why. (NASA image)

Two other instrument packages will be aboard the probe. WISPR, the Wide-Field Imager for Parker Solar Probe, was built at the Naval Research Laboratory and will capture visible-light images of the sun's corona directly in front of the orbiting probe. ISʘIS (pronounced E-sis) – short for Integrated Science Investigation of the Sun, and including ʘ, the symbol for the Sun, in its acronym – is led by Princeton University and will measure the energy and identity of energized electrons and ions, including ions heavier that hydrogen and helium, in order to find out how they are sometimes accelerated to nearly light speed close to the sun.

Together, these instruments should be able to record the speed-up of the solar wind from subsonic to supersonic and the birth of the highest-energy solar particles.

"Plasma physics is really hard to study in the laboratory," said Bale, who focuses on the role of magnetic fields and ionized plasma in space, in particular around stars like the sun. "Sticking a spacecraft right in the hot plasma makes an ideal laboratory."

Looping around Venus

This probe is the chance of a lifetime for Bale. Though his team will deploy booms and test instrument functions one day after launch, most of the instruments will then be turned off and won't begin taking real measurements of the corona until the probe reaches its first close approach to the sun in November.


NASA's Parker Solar Probe shown mated to its third stage rocket motor in July. The third stage rocket allows the spacecraft to gain the speed needed to reach the sun, which takes 55 times more energy than reaching Mars. (Photo by NASA/Johns Hopkins APL/Ed Whitman)

After a loop around Venus to slow down, the probe will get the closest any spacecraft has ever been to the sun, a distance from the center of the sun equal to 36 times the sun's radius (36 solar radii). Venus orbits at 155 solar radii and Mercury at 83 solar radii.

Over the next six years, the probe will loop around Venus six more times, gradually working its way to approximately 9.8 solar radii from the center of the sun. There, it will be well within the corona, at the outer edge of which particles exceed the speed of sound – the Alfvén speed, which is about 200 miles per second – and no longer call the sun home.

"The goal of the mission is to get inside that transition region, so we get into the real corona wh ere the flow is subAlfvénic," Bale said. "We think that boundary is at about 15 solar radii, so we probably won't start hitting it until 2021."

Once inside the corona, the probe may see the jiggling magnetic field lines, or Alfvén waves, bouncing back and forth between the sun's surface and the edge of the corona, a turbulent cascade that may be the feedback loop that accelerates particles to the high speeds seen in the solar wind.

"In early December, I am counting on having that first pass of data at 35 solar radii, and I am sure it will be revolutionary. There will be great new stuff in there, from what we know about previous missions," Bale said.

Over its seven-year mission lifetime, the probe will dip into the sun's inner atmosphere 24 times. As part of NASA's outreach efforts, more than 1.1 million people submitted their names to be recorded on a memory card that will accompany the spacecraft around the sun.

The probe is scheduled for launch in the early hours of Monday, Aug. 11, from Cape Canaveral Air Force Station in Florida, aboard a United Launch Alliance Delta IV Heavy rocket with an upper stage to boost it out of Earth orbit toward Venus.

Since the mission was approved in 2010, some 40 to 50 people at Berkeley's Space Sciences Laboratory have worked on the solar probe. Through the formal end of the mission in 2026, and including subsequent data analysis, UC Berkeley will have received about $100 million out of a total of $1.5 billion spend on the mission.
[свернуть]

tnt22


tnt22

https://blogs.nasa.gov/parkersolarprobe/2018/08/07/launch-week-begins-for-parker-solar-probe/
ЦитироватьLaunch Week Begins for Parker Solar Probe

Linda Herridge
Posted Aug 7, 2018 at 1:31 pm


Encapsulated in its payload fairing, NASA's Parker Solar Probe has been mated to a United Launch Alliance Delta IV Heavy rocket at Cape Canaveral Air Force Station's Space Launch Complex 37 on July 31, 2018. The Parker Solar Probe is being prepared for a mission to perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Photo credit: NASA/Leif Heimbold

Teams preparing for launch of NASA's Parker Solar Probe are beginning a busy week leading up to liftoff, scheduled for Saturday, Aug. 11, at 3:33 a.m. EDT, the opening of a 65-minute window. The spacecraft will launch aboard a United Launch Alliance Delta IV Heavy rocket fr om Space Launch Complex 37 on Florida's Cape Canaveral Air Force Station.
Спойлер

In the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, NASA's Parker Solar Probe is encapsulated in its payload fairing on July 19, 2018. The spacecraft is mated to its third stage, built and tested by Northrup Grumman in Chandler, Arizona. Photo credit: NASA/Leif Heimbold

Parker Solar Probe will provide unprecedented information about our Sun, where changing conditions can spread out into the solar system to affect Earth and other worlds. The spacecraft will fly directly into the Sun's atmosphere wh ere, from a distance of – at the closest approach — approximately 4 million miles from its surface, the spacecraft will trace how energy and heat move through the Sun's atmosphere and explore what accelerates the solar wind and solar energetic particles.

The agency is holding a prelaunch mission briefing Thursday, Aug. 9, at 1 p.m. The briefing will be broadcast live on NASA Television and at http://www.nasa.gov/live. Live launch coverage will begin Saturday, Aug. 11, at 3 a.m. For a complete schedule of mission coverage, including opportunities for media participation, visit https://www.nasa.gov/press-release/parker-solar-probe-briefings-and-events.
[свернуть]

tnt22

https://www.nasa.gov/press-release/parker-solar-probe-briefings-and-events
ЦитироватьAug. 7, 2018
MEDIA ADVISORY M18-103

Parker Solar Probe Briefings and Events

NASA's Parker Solar Probe, a historic mission that will revolutionize our understanding of the Sun, is scheduled to launch on Saturday, Aug. 11. The first launch opportunity is at 3:33 a.m. EDT, at the opening of a 65-minute window. The spacecraft will launch on a United Launch Alliance Delta IV Heavy rocket fr om Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The deadline for media to apply for accreditation for this launch has passed.

Launch coverage will begin on NASA Television and the agency's website at 3:00 a.m. EDT.

Parker Solar Probe, protected by a first-of-its-kind heat shield and other innovative technologies, will provide unprecedented information about our Sun, where changing conditions can spread out into the solar system to affect Earth and other worlds. The spacecraft will fly directly into the Sun's atmosphere wh ere, from a distance of – at the closest approach -- approximately 4 million miles from its surface, the spacecraft will trace how energy and heat move through the Sun's atmosphere and explore what accelerates the solar wind and solar energetic particles.

Parker Solar Probe is part of NASA's Living with a Star Program, managed by the agency's Goddard Space Flight Center in Greenbelt, Maryland, for NASA's Science Mission Directorate in Washington. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed, built and manages the mission for NASA.

United Launch Alliance of Centennial, Colorado, is the provider of the Delta IV launch service for Parker Solar Probe. Northrop Grumman is providing the rocket's fully-integrated third stage. NASA's Launch Services Program, based at Kennedy, is responsible for launch service acquisition, integration, analysis and launch management.

The following is a complete schedule of mission coverage, including opportunities for media participation. All time are EDT:

L-2 Day (Thursday, Aug. 9)

Prelaunch Mission Briefing

A prelaunch mission briefing will be held at 1 p.m. at the Operations and Support Building II. Media wishing to attend this activity should meet at the Kennedy Press Site at Noon for transportation. The briefing will be broadcast live on NASA Television and the agency's website.

L-0 Day (Saturday, Aug. 11)

NASA TV Launch Coverage

NASA TV live launch coverage will begin at 3:00 a.m. For NASA TV downlink information, schedules and links to streaming video, visithttp://www.nasa.gov/ntv.


NASA Web Prelaunch and Launch Coverage

Prelaunch and launch day coverage of Parker Solar Probe will be available on the NASA website. Coverage will include live streaming and blog updates beginning at 3:00 a.m. as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the newsroom at 321-867-2468. You can follow countdown coverage on our launch blog at https://blogs.nasa.gov/parkersolarprobe/.

Post-launch News Conference

A post-launch news conference will be held shortly after the end of launch coverage at Kennedy's Press Site TV Auditorium and air live on NASA Television and the agency's website.


Last Updated: Aug. 7, 2018
Editor: Linda Herridge

tnt22