Старая тема про заправки и танкеры на орбите

Автор Seerndv, 03.11.2014 20:33:14

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

pkl

Цитироватьavmich пишет:
Смысл в том, чтобы попробовать сделать, и посмотреть, где обнаружатся сложности на практике. После такой демонстрации можно говорить о рисках и стоимостях "большой" системы - гораздо аргументированнее, чем до неё.
Для начала надо попробовать сделать луноход с экскаватором и отвалом, чтобы попробовать на Луне рыть карьеры и траншеи. Может, прокладывать кабельные линии. Вот с чего надо начинать! И смотреть, где какие сложности обнаружатся на практике. Потому что если здесь будут сложности, об установках придётся забыть.
ЦитироватьКакую массу нужно привозить на Луну - это надо считать. Если Ангара-5 выводит 24 тонны, КВТК - 4 тонны сухой и 20 тонн топлива, отлёт к Луне - половина массы, то при использовании КВТК - который ещё, конечно, надо сделать - под завязку требуется два старта с Земли. Тогда к Луне идёт 20 тонн, без учёта пустого КВТК - 16 тонн. Посадить получится тонн 7 на поверхность. Удастся ли вписать весь комплекс в эту массу - надо считать.
Даже если и удастся, производительность такой установки мизерной, а это значит, что полученный опыт будет проблематично экстраполировать на большой агрегат.
Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан

Shestoper

Цитироватьavmich пишет:
Ну так самый довод заняться этим - чтобы показать, что таки НННШ?  :)  По крайней мере, следуя этой логике.
Для нынешних грузопотоков по полтора спутника в год никто не будет заниматься даже простыми заправками, тем более лунным кислородом.
Переходите в секту солнцепоклонников, без СКЭС ваши мечты не реализуются.  :D


pkl

Вам же сказали - потому что грузопоток
Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан

avmich

Сегодня грузопоток известно какой - и он не рекордный даже для периодов без супертяжей. То есть, можно нарастить грузопоток и без того, чтобы строить очередной Сатурн. Понятно, что при небольших изменениях грузопотока так и будут делать. А на большие изменения пока что не хватает пороху.

Seerndv

ЦитироватьNASA interest in an interplanetary highway supported by Propellant Depots August 10, 2011 by Chris Bergin

 
NASA's Human Architecture Team (HAT) is actively working on a roadmap towards evolvable demonstrations of Propellant Depots – with a potential goal of setting up an "interplanetary highway" to enable low cost exploration. With proposals being sought, industry sources point to a small, 30 metric ton capacity, Centaur derived depot as an initial leading candidate.
 
Propellant Depots:
 
Based around a solution to one of the central problems for Launch Vehicles and Spacecraft, propellant depots are a highly favored approach to removing the need to launch with all the fuel required to complete an entire mission – in turn allowing Launch Vehicles to lift more hardware into space.
 
They are – for lack of a better phrase – gas stations for spacecraft, a helpful tool for the new phase of exploration, which requires spacecraft to utilize a large amount of fuel to adventure out of Low Earth Orbit (LEO) – and return back home.
 
See Also
 
The potential ability to refuel cryogenic propulsion stages on-orbit would provide an innovative paradigm shift for space transportation, supporting NASA's Exploration program as well as deep space robotic, national security and commercial missions.
 
Refueling enables large Beyond Earth Orbit (BEO) missions without relying "solely" on super Heavy Lift Vehicles (HLVs), fr om early Lagrange point missions to near Earth objects (NEO), the lunar surface and eventually Mars. Earth-to-orbit launch could also be optimized to provide competitive, cost-effective solutions that allow sustained exploration.
 
NASA interest in Propellant Depots is no secret, as much as the subject never seems to gain enough momentum via NASA's public comments. However, internally – especially in recent months – NASA teams have been openly pressing forward with planning for at least a demonstration of the technology.
 
Indeed, it was this time last year when documentation noted "use of orbital propellant transfer and storage (Depots) provides a breakthrough in space transportation enabling truly affordable, sustainable and flexible exploration to destinations beyond low Earth orbit (LEO)," as NASA teams discussed the viability of a LO2/LH2 PTSD (Propellant Transfer and Storage Demonstration) mission by 2015.
 
With the United Launch Alliance (ULA) also basing their exploration "master plan" around the use of their Atlas and Delta launch vehicles with a Propellant Depot architecture, progress then appeared to slow down to a snails pace by the latter half of 2010.
 
However, Propellant Depots are back, and with a bang, seemingly coinciding with NASA's reorganization of their exploration based departments, as "Technology Development Activity" notes fr om the Johnson Space Center (JSC) made no effort to hide the interest of supporting the technology as a compliment – as opposed to alternative – to their Space Launch System (SLS) efforts.
 
"Innovative tasks and advanced development work opportunities were presented to the HQ Engineering Management Board. Looking at ESMD and SOMD guidance to propose a management and evaluation structure to sel ect projects based on affordability and progress toward exploration in addition to SLS and MPCV (Orion) to get us out of LEO," noted TDA notes (L2).
 
TDA – who cover a number of projects, including the proposed Power-Beaming Demonstration with the International Space Station (ISS) – worked a budget activity back in the Spring, prior to a planning effort which resulted in a presentation at NASA HQ.
 
"Working with the Commercial team and the HAT team on an evolutionary plan for propellant depots. Putting together a story on propellant depots, and what an evolutionary strategy for depots might be," added the notes. "The team continues to develop a strategy for a propellant depot as an alternative for the future."
 
Propellant Depots could prove to be a viable passenger on the SLS cargo missions, at least in the next decade, but the requirement to at least demonstrate the "gas stations" means an existing vehicle – such as a Delta IV or Atlas V – is the obvious route to take, one which would enable a sooner – rather than later – approach to setting up the opening salvo of what may become an interplanetary highway.
 
"Looking at the potential for use a propellant depot in concert with existing launch vehicles, and a strategy for implementation. To support that, anyone with issues or concerns with depot are invited to attend and share them," notes continued over recent weeks. "Continuing to tighten up the story on propellant depots. Starting to look at a transfer vehicle and how that fits into the interplanetary highway concept."
 
With the launch vehicle providing the ride uphill, placing the depots in their sel ected spots in space would likely be tasked to a tug vehicle, with references on the TDA notes referencing an Orbital Transfer Vehicle (OTV) – potentially a version of ESA's Automated Transfer Vehicle (ATV).
 
"Continuing to develop a strategy for using propellant depots. A good concept was put together for some demonstrations that can be evolved. Will have a first look at an orbital transfer vehicle (OTV) concept on a reusable type OTV. Looking at some top priorities for the agency in terms of developing an interplanetary highway."
 
For the interim, the Depot Team is reporting back to the Human Architecture Team (HAT) on the studies being evaluated with depots, whilst comparing them to the in-house mission designs under evaluation.
 
The "Simple Depot":
 
With NASA's intentions now public, via the selection of four companies to develop concepts for storing and transferring cryogenic propellants in space, several proposal reports to help define a mission concept to demonstrate the "cryogenic fluid management technologies, capabilities and infrastructure required for sustainable, affordable human presence in space", are expected in the not too distant future.
 
In what is being noted as one of the leading concepts, the Simple Depot is a small, 30 metric ton capacity, Centaur derived depot, would allow exploration possibilities for Orion and other spacecraft, without the need for the additional "mission fuel" to be carried by the launch vehicle.
 
"By refueling the DCSS (Delta Cryogenic Second Stage) upper stage following launch of Orion on Delta IV heavy lift vehicle (as the example cites – as much as Orion is only currently set to launch on a test mission via this EELV), a 30 mT depot can support near-term missions of Orion to the Earth Moon Lagrange points or lunar fly-by missions," notes an expansive 2011 presentation on the "Simple Depot" concept (L2).
 
"The same depot concept lends itself to much larger capacity depots using larger diameter tanks, upper stages and payload fairings. These larger depots can enable missions to NEO, the Lunar surface and Mars.
 
This concept includes two additional basic tenets incorporated into the design to allow for simplified development, reduce development costs and ensure mission success, namely taking advantage of existing experience and being built using hardware that is common to the rest of space transportation.
 
"The proposed Simple Depot concept satisfies all of these design principles. Its design employs settled propellant management and predominantly existing flight qualified hardware," added the presentation.
 
"The design consists of a large LH2 tank connected by a warm mission module to the LO2 tank. This depot concept can be launched on a single Atlas mission requiring no on-orbit assembly allowing for complete system ground check out."
 
The Simple Depot LH2 module is composed of a large tank with minimal penetrations – an important factor for storing cryogens. For the "small" 30 mT depot, the LH2 tank is a modified Centaur tank, as used as the main element of the upper stage of the Atlas V launch vehicle.
 
Commonality means the module is built on the same tooling, using the same procedures as construction of the Centaur.
 
"The LH2 module is launched with the LH2 tank filled with ambient temperature helium, not LH2. This allows the LH2 and mission modules to be designed primarily for orbital requirements not ground and ascent environments. With these substantially reduced requirements the skin gauge can be reduced from today's 0.020" for Centaur's to 0.013"," the presentation noted.
 
"This is the same gauge as used on early Centaurs. This thinner tank wall allows the tank to be very light weight, (~500 kg). Made of corrosion resistant stainless steel, the thin tank walls reduce the conduction of energy to the liquid and results in a very low thermal mass that must be quenched when the tank is filled or when slosh waves splash warm walls."
 
The LH2 tank is connected to the mission module by low conductivity Ball Aerospace heritage cryogenic composite struts. Keeping the entire LH2 module lightweight minimizes the required cross section of these struts.
 
This is critical to minimizing the structural heat transfer from the warm mission module to the very cold LH2 module. The struts can also be vapor cooled to further reduce conductive heat leakage into the LH2 tank.
 
The entire LH2 tank is encapsulated in a robust, Ball Aerospace IMLI blanket that incorporates radiation barriers, both vapor and active broad area cooling (BAC) as well as MMOD protection.
 
"The described LH2 tank is 3m in diameter by 16m long limited by the existing Atlas payload fairing. The tank is 110 m3 and can store 5 mT of LH2. At a useful mixture ratio (MR) of 6:1 this quantity of LH2 can be paired with 25.7 mT of LO2, allowing for 0.7 mT of LH2 to be used for vapor cooling, for a total useful propellant mass of 30 mT.
 
"Accounting for the tank weight, plumbing, instrumentation and thermal protection the LH2 module is anticipated to weigh <2 mT. Based on analysis the described depot will have a boil-off rate of approaching 0.1 percent per day, consisting entirely of hydrogen."
 
To conserve volume, allowing for a useful sized depot to be fully integrated on the ground and emplaced on-orbit in a single launch, the LO2 is stored in the upper stage's propellant tank. As such, this requires a thermally efficient upper stage that can be completely encapsulated with MLI.
 
The presentation notes that the DCSS design encapsulates the LO2 tank in the inter-stage allowing the tank to be wrapped in MLI. The equipment shelf, RL10 engine, feedlines and inter tank struts all attach directly to the tank, however, resulting in thermal shorts.
 
While the DCSS LH2 tank sports fewer attachments, it is exposed to atmosphere during ascent preventing application of standard MLI without development of an application-specific aero fairing.
 
Atlas V fully encapsulates the Centaur inside the 5.4 m payload fairing and is currently flown with either a single or a 4-layer MLI blanket. However, Centaur's LO2 tank aft bulkhead serves as the equipment shelf with the RL10 engine, feedlines, helium bottles, hydrazine bottles, pneumatics panel and reaction control system loop mounted directly to the bulkhead.
 
This results in substantial tank heating. Centaur's LH2 tank however is very thermally efficient, especially if there is not a substantial thermal gradient across the common bulkhead.
 
"For these reasons the proposed Simple Depot would be launched on an Atlas and use Centaur's LH2 tank to store the LO2," notes the conclusions. "Centaur's LH2 tank is also relatively large, with a volume of 47 m3 capable of containing 54 mT of LO2."
 
It was, however, noted that several modifications – such as new valves and plumbing – would be required on the Centaur.
 
While the Simple Depot is so light that it could be launched on an Atlas 501, it would be launched on an Atlas 551 – the configuration which recently launched the Juno spacecraft. This vehicle would provide ~12 mT of Centaur residuals (combined LH2 and LO2) in a 28.5 degrees by 200 nm circular LEO.
 
Once safely delivered to orbit the LH2 module must be chilled prior to transfer of Centaur residual LH2. Centaur's cold hydrogen ullage gas is vented through the LH2 mission module tank to chill the tank. This chilldown process has been demonstrated on past Centaur flights to chill the feedlines and RL10 pump housing.
 
"Once the LH2 module is chilled the transfer of Centaur's ~2mT of residual LH2 can commence. This is conducted in a settled environment. The LH2 transfer is pressure fed. LH2 will enter the LH2 module tank subcooled, quenching the GH2 vapor and sucking in additional LH2," adds the presentation.
 
"This "zero-vent fill" transfer process is indifferent to the liquid-gas interface. This zero-vent fill process has been demonstrated to be very effective, attaining nearly 100 percent fill.
 
"Following completion of the LH2 transfer, Centaur's LH2 tank is vented to vacuum, fully evacuating the residual hydrogen gas. Following the Centaur LH2 tank "safing", the ~10 mT of residual LO2 is transferred from the LO2 tank to the LH2 tank, the LO2 module tank, using the same transfer process. Once Centaur's LO2 tank is completely drained the tank is locked up trapping the residual helium and GO2.
 
"This residual gas must be kept at a higher pressure than Centaur's LH2 tank (LO2 module) to avoid reversing Centaur's common bulkhead."
 
The brains of the depot is located between the Centaur LO2 module and the LH2 module – known as the mission module. This module includes the flight computer, solar panels, batteries, fluid controls, avionics, remote berthing arm and docking and fluid transfer ports.
 
Other important elements of the depot are also noted, such as the sun shield, which can be used to shadow objects that must be kept very cold – such as a propellant depot.
 
"The James Web Space Telescope (JWST) uses an open cavity planer sun shield to ensure that the entire mirror/instrument assembly is maintained at a low temps", the presentation continued.
 
"Propellant depots in free space, such as at a Lagrange point, can use this same shielding concept to provide a very cold environment wh ere cryogenic, even LH2, storage is readily achieved.
 
"For small sun shields it may be possible to erect the sun shield prior to launch. However in most cases the shield will have to be deployed once on-orbit. The JWST uses a mechanical boom to deploy the sun shield. Alternatively a pneumatic boom, inflated with waste GH2, can be used to deploy and support the sun shield."
 
For visiting spacecraft, the Autonomous Rendezvous and Docking (AR&D) capability is referenced, citing how the Russians have a proven capability, while the US is making strides, as seen with the Defense Advanced Research Projects Agency's (DARPA) Orbital Express mission.
 
The ISS resupply ship fleet, namely Progress, ATV and HTV are also mentioned – although the future US spacecraft raise the hopes they will have the sufficient ability to utilize Propellant Depots.
 
"Robust AR&D development continues with, NASA's Orion crew capsule, along with NASA's two commercial orbital transportation services (COTS) program winners (SpaceX and Orbital Sciences Corporation). Results fr om these on-going programs will ensure that AR&D is widely available to support the servicing and use of propellant depots."
 
With a 30 mT LO2/LH2 capacity, the described Centaur derived cryogenic propellant Simple Depot can provide near term operational use supporting large scale robotic missions and even crewed Earth Moon Lagrange point and lunar flyby
 missions.
 
By making efficient use of the entire Atlas 5m payload fairing volume for the LH2 module the existing Atlas can launch a depot with 70 mT of combined LO2/LH2 capacity. With ULA's proposed larger Advanced Common Evolved Stage (ACES) the depot capacity in a single EELV launch increases to 120 mT or even 200 mT with a 6.5m PLF.
 
Interestingly, while some class Propellant Depots as an alternative to HLV's such as the SLS, the presentation notes the same concept can be applied to future heavy lifters, in order to allow launch of even larger capacity depots.
 
Also discussed are the relevant requirements a depot would need, such as tanker missions, to top up the depot in-situ. This is required due to the natural boil off of the propellant, although there would be flexibility, with refueling tanker missions launched with propellant mass sized to the selected launch vehicle.
 
In summary, the presentation adds that Propellant Depots can enhance the mission capability of exploration architectures regardless of the use of small reusable rockets, larger EELV class rockets or much larger heavy lift vehicles, while future replacement depots can sport improved technology, as an interplanetary highway is constructed in space.
 
(Images: L2 Content, ULA, Ball Aerospace)
 
(As the shuttle fleet retire, NSF and L2 are providing full transition level coverage, available no wh ere else on the internet, fr om Orion and SLS to ISS and COTS/CRS/CCDEV, to European and Russian vehicles. 
http://www.nasaspaceflight.com/2011/08/nasa-interest-interplanetary-highway-supported-propellant-depots/

Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

Seerndv

#46
ЦитироватьSatellite Technology Feature Article
October 24, 2011
In-orbit Fuel Depots vs. NASA's Heavy Lift Space Launch System (SLS) for Dummies
 
By Doug Mohney, Contributing Editor
 
 
The New York Times has (belatedly) discovered NASA's examination of propellant depots. In November, NASA engineers will meet in Washington to discuss how to leverage propellant depots to get further into space and enable "more ambitious missions" using the agency's heavy lift Space Launch System (SLS) rocket, according to an October 22, 2011 piece.   But apparently NASA officials aren't interested in trying to convince/fight Congress about the time and cost savings a fuel depot architecture would offer deep space missions.
NASA has done an internal study on fuel depots that they've yet to officially release to the public or to Congress. A July 21, 2011 draft PowerPoint summary of the document was leaked to the NASA Watch website last week.  
"Not only was the fuel depot mission architecture shown to be less expensive, fitting within expected budgets, it also gets humans beyond low Earth orbit a decade before the SLS architecture could," writes NASA Watch editor/gadfly Keith Cowling. "Moreover, supposed constraints on the availability of commercial launch alternatives often mentioned by SLS proponents, was debunked.  In addition, clear integration and performance advantages to the use of commercial launchers Vs SLS was repeatedly touted as being desirable: 'breaking costs into smaller, less-monolithic amounts allows great flexibility in meeting smaller and changing budget profiles.'"
Let me try to simplify the acronym-rich "Propellant Depot Requirements Study Status Report" into a simply model. Over 70 percent of conduction an exploration mission beyond low earth orbit is fuel (to be precise for the rocket scientists: propellant, which is fuel and oxidizer).   The study crunches the numbers for going out and starting to demonstrate and build a fuel-depot infrastructure today with existing rockets vs. spending years and billions of dollars to get a heavy lift rocket and then go off and explore an asteroid or the moon.
If you start using a fuel-depot architecture to get to an asteroid today, you can get astronauts there by 2024, at a rough cost of $60 billion to $86 billion.  You use a number of smaller rockets to put up a fuel depot, fuel, and hardware into orbit, put it all together, fuel up, and go explore.
If you have to build a heavy lift rocket – which doesn't exist today – you don't get the mission to 2029 and end up spending $143 billion. 
Building a heavy lift rocket takes at least five years and anywhere from $57 billion to $83 billion more.
If you look at the problem from how much it costs to put 100 metric tons (MT) into orbit vs. cost, it's very disturbing, even assuming you've magically washed away the tens of billions of dollars for doing the research and development on a SLS heavy lift rocket capable of putting that much stuff into orbit. 
Estimates on a single SLS launch for 100 MT to $1.86 billion, according to another NASA study conducted by Georgia Tech dated September 2, 2010 and published by NASA Watch on March 30, 2011. NASA won't publically say how much SLS is estimated to cost per launch, but leaked documents suggest a cost of around $2.8 billion to $3 billion to conduct a single 70 MT flight every other year -- that's the cost to just buy the rocket and do the launch.
The current existing workhorses of NASA and the Defense Department, the United Launch Alliance (ULA) Atlas V and Delta IV, can put up anywhere between 22 MT to 29 MT into low earth orbit. While not public, costs estimates per launch range between $140 million to $170 million. Assume it costs $170 million for a single launch to put 22 MT into orbit. Multiple by 5 to put roughly 100 MT into orbit at a cost of $850 million and five launches. Compare that to $1.86 billion to $3 billion for an estimate of a single SLS launch.
Yes, it's a simplistic pricing model; there's some upfront hardware costs to put a fuel depot into orbit and the hardware has to replaced every decade or so, but you're saving (literally) a ton of money.
Other advantages with using in-orbit refueling include fault tolerance (lose one SLS launch, you lose everything), creating a real/expanded market for commercial launch vehicles as well as competition to drive pricing down, providing a steady stream of business for the U.S. launch industrial base, and a path for international participation (more cost savings) by providing launch services and fuel .
Hopefully NASA Deputy Administrator Lori Garver will start looking at and talking about the advantages of fuel depots for saving money and creating commercial competition, like she has with a pitch to fully fund U.S. commercial crew development

 
 

Doug Mohney is a contributing editor for TMCnet and a 20-year veteran of the ICT space. To read more of his articles, please visit columnist page.
http://satellite.tmcnet.com/topics/satellite/articles/233015-in-orbit-fuel-depots-vs-nasas-heavy-lift.htm
Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

Seerndv

Интересно, дошло ли это в конгресс до сенаторов в виде запроса?
Зайцев их знает  :oops:
ЦитироватьThe SLS Empire Strikes Back                                                              
By Rand Simberg On November 4, 2011 · 19 Comments
                                                          
                         
                                              
                               

                                                       
                                         
                         
So there was a leak of an internal NASA document a few weeks ago which showed that space transportation architectures that employed the use of orbital storage of propellants, rather than lifting them all at once on a heavy-lift vehicle (such as the Senate Launch System), would save the taxpayer tens of billions of dollars and accelerate the schedule for manned trips beyond earth orbit by half a decade or more. It was information that California Congressman (and former Chairman of the Space Subcommittee) Dana Rohrabacher had been demanding fr om the agency for weeks, to no avail until it was leaked. The political effect would be that the SLS is unneeded, which would be a devastating blow to those senators and representatives who had continued to support it as an earmark for jobs in their districts.
Well, supporters of the "Big Monster Rocket" have struck back. Previous NASA administrator Dr. Michael Griffin, and former NASA associate administrator under him (and current head of the Space Policy Institute at GWU) Dr. Scott Pace, have jointly written an editorial defending it over at Space News. Despite the credentials and experience of the authors, however, the arguments presented are flawed. I've written a letter to the editor, but it was restricted to 500 words, and there are far too many flawed arguments to address them all in that space, so I thought I'd dissect it here, with a thorough fisking. [In the interest of disclosure, Dr. Pace is a former colleague of mine at Rockwell International Corporation, and a friend of almost three decades.]
 
 
ЦитироватьConsiderable recent attention has been devoted to the possible use of orbiting fuel depots for human exploration beyond Earth orbit. In this concept, large propellant tanks are placed in a suitable low Earth orbit (LEO), to be filled by multiple launches of medium-payload-class vehicles, i.e., a few tens rather than a hundred or more metric tons of payload capacity. These depots are then used to refuel upper stages, which arrive empty in LEO after launch fr om Earth, after which they are launched outward to the Moon or beyond.
Actually, they wouldn't be just in LEO — most serious proposals have them at the earth-moon L-1 point as well, where they could better utilize lunar resources as a propellant source, and have monthly opportunities for trips to the rest of the solar system.
 
ЦитироватьAdvocates for this approach believe that the money saved by not building a heavy-lift launch vehicle such as the Space Launch System (SLS) will more than compensate for the cost and operational inefficiencies entailed in bringing the required total mass of propellant to orbit in smaller individual packages.
That is actually only one benefit. Others are that in-space vehicles (such as lunar landers) launched unfueled can have less structural mass, because they don't have to sustain the high loads imposed by full propellant tanks in the high acceleration of launch. This improves overall propellant efficiency of the in-space transportation architecture. And depots will be required eventually, anyway, because no matter how large a launch vehicle is, one can always come up with a mission that needs a bigger one. So we might as well learn now how to do deep-space missions with multiple launches. But their biggest benefit is that they will drive down the cost of access by providing a healthy propellant-delivery market for a competitive robust domestic launch industry. They also provide opportunities for cooperation with other nations, without putting any company, or nation, on the critical path.
 
ЦитироватьWhether fuel depots make sense in the near term depends upon what question we are trying to answer. If the question is, "What kind of space architecture will generate a high traffic model for private space firms without having to pay for missions that actually go beyond LEO?" then fuel depots are an attractive concept. But if the question is instead, "How can we efficiently create the strategic space transportation capabilities to enable humans to explore beyond LEO?" then they are not.
Actually, that's a false choice, and in fact it's a straw man, because I don't know anyone who is asking the first question. Though in fact depots do nicely answer the second one. Here's the question we should answer: "How can we maximize the amount of human space activity for a given federal budget?" The Space Launch System not only doesn't answer this question, it is in profound opposition to it.
 
ЦитироватьThe fuel depot concept may be — we think will be — valuable when propellant can be harvested fr om in-space resources, such as water trapped in lunar craters or oxygen extracted fr om the regolith. Unfortunately, we are not yet in a position to exploit such resources, and so for now fuel depots are an answer to a question that is at best premature. The SLS and the Multi-Purpose Crew Vehicle (MPCV) are needed today. Fuel depots will be needed tomorrow, when a robust space operations infrastructure has been established and operations beyond LEO are common.
That is simply not true. I have already described the benefits of depots above, even without the use of extraterrestrial resources. And if we really need SLS today, then we're in trouble, because NASA tells us we aren't going to get it until the end of the decade. But fortunately, we don't need it today (or any day). In fact, as I noted over at Popular Mechanics today, Dr. Griffin recently testified before Congress that one can go to the moon without SLS, at least if one is Chinese:
 
ЦитироватьQ: I know the Chinese Long March 5 rocket is in development. I wondered if you could compare that to anything we have in the American inventory. When it's built will it really be larger than anything we have? And why do you think that the Chinese are building such a large rocket?
Griffin: Well, the Long March 5 is comparable in scale to today's Delta IV Heavy or to the Ares I crew vehicle—which we were going to build and which was cancelled. So it's on the order of, and of course until it flies regularly we won't actually know, but it's on the order of 25 tons of payload to LEO. So it's not in the class of, say, the Saturn V or the new SLS [Space Launch System].
But it's a very significant capability and in fact by launching and rendezvousing four of those in LEO it would be possible for the Chinese to construct a manned lunar mission with no more than that rocket and no more than Apollo technology. And I have in the past written up on how that mission would work fr om an engineering perspective. So with the Long March 5 the Chinese inherently possess the capability to return to the moon should they wish to do so.
Q: And you are saying that we do not have anything comparable to that other than what had been talked about?
Griffin: We do not. Well, we have nice view graphs (laughter in the background).
[My comment] Actually, contrary to Griffin's implication, the Delta IV Heavy has flown, so it's more than "view graphs." And the Long March 5 isn't scheduled to fly until 2014. But even in that timeline, China could be thinking about a moon visit relatively soon. In the U.S., by comparison, the Space Launch System NASA is now mandated to build couldn't return Americans to the moon until at least the late 2020s (and would add tens of billions to the cost), according to a recently leaked NASA internal document.
So, Mike, if those inscrutable Chinese can get to the moon without a Big Monster Rocket, why can't we? Are they that far in advance of us?
But the next section is wh ere the op-ed really goes off the rails:
 
ЦитироватьThe challenge for fuel depots is simply that the marginal specific cost of payload to orbit is generally lower for larger launch vehicles. There may be exceptions, but the trend is clear. Moreover, this same trend is observed for other forms of transportation — road vehicles, trains, ships and airplanes. Without exception, larger vehicles are used whenever possible for long-haul transportation. In evaluating depot concepts, one must then ask: Why will space transportation be an exception? Is it really an exception? Or are we missing one or more crucial points in the analysis?
When depots or nodes are used in transportation architectures, they must be supplied by the least expensive means available rather than the contrary. There is an old joke about clothiers in the New York garment district who professed, it is said, to sell each garment at a loss, but would "make it up on volume." Fuel depots seem to exemplify that joke. It is very difficult to see how putting propellant in orbit in small quantities at higher marginal cost can be cheaper in the aggregate than putting it up in larger quantities at lower marginal cost, even without factoring in the cost of the depot itself and its own operational requirements.
The economic attractiveness of propellant depots depends strongly upon the price claims of commercial launch companies for fuel delivered to orbit. At this point, such claims should be considered highly suspect. Even a signed contract offers little assurance, because if the supplier requires additional funds to continue service and there is no government capability available as a backstop, the money will be tendered. Thus, price claims made by companies that are not yet conducting routine operations at that price should be regarded with skepticism.
Wh ere to start? Well, first of all, it makes no sense to talk about marginal costs in a decision like this. As I wrote in my letter to the editor of Space News (which I hope will be published next week):
 
ЦитироватьMarginal cost (the cost of the next flight, given that a system is already operating) makes sense in deciding which existing vehicle to fly on, but it's useless by itself in deciding whether or not to develop a new vehicle. For that decision, one must take into account the total life cycle cost, flight rate, and average cost per flight, including amortization of development costs and annual fixed costs.
Per Congressional mandate, SLS is going to cost a minimum of $18B just to be developed to its first, smaller version. Total cost estimates into the decade of the twenty twenties to get to full capability range from twice to three times that amount. NASA says it will fly once every year or two. If they get an annual flight out of it for thirteen years, that would imply a cost of at least three billion per flight. That would imply a cost per tonne (for 130 tonnes) of $23M, or about $10K/lb. Even if they somehow fly four times a year, and I generously grant a marginal cost of zero (unlikely with a large expendable vehicle), it's still $2500/lb when all costs are included.
In contrast, the SpaceX Falcon Heavy is priced at $120M for 53 tons, or a little over a thousand dollars per pound — that is, ten percent of the cost of the SLS, with no development costs funded from the taxpayer. If you don't believe that this vehicle will ever fly (we'll know in a year or two, because that's when first flight is scheduled), then use the now-existing twice-flown Falcon 9, whose quoted price is $60M for 23,000 pounds or $2600/lb – about the same as the most optimistic case for SLS, and available today, not a decade from now.
Note that it's even worse, because I didn't discount the future dollars — they're all current-year, whereas in reality the up-front cost of the development loom even larger (not counting opportunity costs if we were spending it on actual space-exploration technology development and hardware).
Now I suppose it's possible to think that SpaceX's (and United Launch Alliance's) prices will magically increase by the large percentage required to make the SLS's numbers look attractive, but they offer no reason to do so, other than Fear, Uncertainty and Doubt (FUD), and it seems quite unlikely to me, given that they are in competition with each other and driven to keep prices as low as possible.
But the other problem is that they are making a theoretical argument (big rockets have lower marginal costs of payload than smaller rockets) with little empirical data to substantiate it, and as shown above, there is actually real-world data that says it's wrong. But it goes beyond that — it's not even a theoretically valid argument. Here's why. They are saying that there are economies of scale with vehicle size, and generally there are, though for launch vehicles, there are limits to how well they scale, in terms of structural efficiency (high hydrostatic pressure in giant propellant tanks increases needed structural weight), ground support equipment, processing facilities, etc. For example, one of the problems that the SLS has is that while it's the same class of rocket as the Saturn V, the Saturn was all liquid, and fueled at the pad, whereas the SLS has Shuttle-like solid boosters (because otherwise ATK wouldn't get to keep their pork flowing) that are mated in the Vehicle Assembly Building, and then the whole vehicle is rolled to the pad on the same crawler and crawlway (road for the crawler) used by Saturn and Shuttle. But it wasn't designed to handle that load, and studies have indicated that both will probably have to be upgraded (just one of many reasons that SLS will cost so many billions to develop).
But the other problem with their argument that bigger is better is that it comes with a caveat — all other things being equal. And as we've seen in the real world, they're not. For one thing, we don't have to pay development costs for existing vehicles. But as Jeff Greason noted in the Augustine hearings (and fellow panel member Sally Ride agreed), even if Santa had delivered Constellation fully developed for Christmas, NASA wouldn't have the budget to operate it, because it was so manpower intensive (which was the point — it is about jobs, not spaceflight), and SLS won't be any better in that regard.
Another way that they're not equal is flight rate. Here's the real problem. At this stage of the industry, there simply isn't enough demand to justify a vehicle of that payload class, particularly if it's expendable. At this stage of the industry, the only relevant scale to increase to achieve economy is not vehicle size, but flight rate. As I noted a few years ago at The New Atlantis, we saw this in the Space Transportation Architecture Study in the eighties:
 
ЦитироватьThese studies considered a wide variety of vehicle types—reusable, expendable, single- and multiple-stage, various propellant combinations, air-breathing, rocket, horizontal takeoff and landing, vertical takeoff and landing, and more—the entire range of conceivable ways of getting crew and cargo into Earth orbit and (when necessary) back using semi-conventional aerospace vehicles. These studies also considered a range of potential "mission models," with different types, mass, and volumes of payloads, over the next few decades. The models ranged from the minimal (with no commercial activity and little or no growth in NASA or military space budgets) to the expansive (with major new civil space initiatives, including crewed lunar and Mars missions, and large-scale commercial activity).
As we looked at all the combinations of architectures and models, we discovered something interesting. While some vehicle design concepts were clearly better than others, they were all extremely expensive per-flight for the low-activity scenarios, and they were all much less expensive for the high-activity scenarios. Using the space shuttle as a reference, we developed a notional architecture that had sufficient facilities and vehicles for a hundred shuttle flights per year. (That sounds ridiculous today, since there have never been more than nine shuttle flights in a single year, but in fact the shuttle was originally intended to fly once a week.) Surprisingly, the per-flight costs that we estimated were much lower than the actual shuttle costs at the time. The same was true of other launch concepts we studied. The cost per-flight or cost per-pound varied dramatically—in some cases by a factor of ten—depending on the level of activity for a given vehicle in each mission model.
This means that even the theoretically best vehicle concept, if flown rarely, will be unaffordable to fly. A mediocre design, flown often, will beat it in cost per flight. How frequently we used the hypothetical launch system was much more important than what kind of propellant it used, or how many stages it had, or whether it took off or landed horizontally or vertically, or any other design choice. This, to me, was the key insight from all of those studies, and it's one that remains true to this day. For example, the costs associated with the space shuttle largely go to pay the army of personnel and associated infrastructure needed to keep the shuttle fleet operational at all, even when the shuttles don't fly. This doesn't mean, of course, that we should ignore vehicle design, but it does mean that we need to pay much more attention to the dynamics of the market.
And it remains true today. SLS proponents are proposing a vehicle that will fly very rarely (NASA says once every year or two). What will the standing army of personnel be doing between flights to maintain their proficiency? How can such a vehicle possibly be as reliable as a system that flies dozens of times a year? How can its costs possibly compete with one that has a high utilization rate of manufacturing and processing personnel and facilities? And in fact, this explains the empirical reality, described above, that today's existing rockets are much cheaper per pound of payload delivered than SLS can ever hope to be.
And here's one more question, that SLS proponents never answer. If a vehicle of this class is essential for spacefaring, then why don't we need two of them? Why is there no concern about launch-system resiliency, and redundancy, and architectural robustness?
After all, the Shuttle spent about a quarter of its life cycle unable to fly due to problems such as losing a couple, or mysterious hydrogen leaks, or whatever. The delays caused by Challenger and Columbia were at least two and a half years each. Do they really believe that somehow, this time we'll get it right, this time the vehicle will have no problems that keep us from flying it? Really? So if we can't explore space without it, and we are willing to risk not being able to explore space for months or years at a time due to problems with a non-resilient launch system, then the message I take from that is that we don't think that exploring space is as important as building and (occasionally, but not very often) flying big rockets.
They go on to sow more FUD.
 
ЦитироватьIssues of technical feasibility and practicality also exist. When cryogenic fuel is stored on-orbit, in whatever vehicle, the ability to maintain it in its cryogenic state is crucial. With today's capability, we might achieve liquid hydrogen boil-off losses of about 0.35 percent per day, or about 10 percent of the fuel each month. At a boil-off rate of 0.1 percent per day — a capability not yet demonstrated — 10 percent of the fuel will be lost in three-and-a-half months. Completely closed-cycle systems, or those that are nearly so, are possible with active refrigeration. This technology absolutely must be pursued, as it is necessary for missions beyond the Moon. But we should be skeptical of unproven claims about extremely low boil-off rates, such as the 0.5 percent loss rate per month assumed in one recent study, until and unless the technology is demonstrated.
First of all, we don't have to use hydrogen. Yes, it reduces the propellant amounts needed, but we could be doing exploration with storables to get started, and transition to cryos later after we mature the technologies. Also, I don't know wh ere their boiloff numbers are coming from. I don't think that the people at ULA would agree with them, and while they indeed haven't demonstrated the low rates, they have modeled them, and I'm unaware of any reason to think them unachievable.
 
ЦитироватьThe most reasonable claim made in support of fuel depots is that if they are employed to the exclusion of a heavy lifter, one saves the cost of building the heavy lifter. This is certainly true — but then we do not have a heavy lifter! Heavy-lift launch is a strategic capability for a spacefaring society, and its absence severely constrains any plans. The 130-metric-ton SLS capability should be regarded as the floor of space-lift capability for exploration, not the ceiling.
Note that this is an completely unsupported assertion. In what way does it constrain our plans? In terms of sending people to other locations in the solar system, or building off-planet facilities, what can we do with it that we cannot do without it? What is magic about 130 tonnes? Wh ere is the analysis to support this? I've never seen it.
 
ЦитироватьThe kind of space program that we need requires transportation of much that is not fuel. While the international space station offers an existence proof that one can build a 400-metric-ton object in space using pieces weighing less than 15 tons each, the time, money and programmatic risk required for assembly offers the clearest possible demonstration that it was not the best approach.
What specific pieces of exploration hardware weigh more than a Falcon Heavy can toss? Wh ere is the analysis? A lander with no propellant weighs a dozen tons at most.
And with modern high-flight-rate vehicles why would it involve more time to assemble a mission? If there is a launch failure, wouldn't we rather lose a single element that could be cheaply replaced than everything at once? And if it's not replaceable, with more coming off an assembly line, then how fragile is our human spaceflight program?
This is all just more FUD.
 
ЦитироватьThus, those who argue that we could save money by using fuel depots and not building a heavy lifter seem willing to ignore a key theme: We need a heavy lifter for reasons going far beyond the transportation of fuel. It may be that in future space architectures the flexibility offered by fuel depots will compensate for their inefficiency. But they are not an appropriate feature of the developmental systems and architectures we need to build now.
This is just a repeat of the previous paragraph. What pieces? How much do they weigh? How "inefficient" are depots, and by what measure? How can that "inefficiency" possibly cost us the tens of billions of up-front undiscounted dollars that they propose to spend on SLS? Do they really believe that developing and demonstrating cryogenic storage technology is going to cost tens of billions? If so, why? And why do we need to build SLS "now," but we don't need to build landers, departure stages, and things that we actually need to explore and develop space "now"?
Do you know when we need to build heavy-lift vehicles? When there is enough traffic to justify flying them more than once every year or two. And when we have figured out how to do them without throwing the vehicle away every time, so we can really have the "marginal cost" benefits that they falsely claim for SLS.
 
ЦитироватьFuel depots as an element of a near-term space architecture are an example of magical thinking at its best, a wasteful distraction supported by the kinds of poorly vetted assumptions that can cause a concept to appear deceptively attractive. We in the space community are especially prone to such behavior. If we actually want to accomplish anything, it must cease. We need to do the right stuff, right now. When we have settlements on the Moon and Mars, the use of fuel depots will make sense. But for today, the last thing we should do is to put one of the hardest problems — long-term cryogenic fuel storage — in series with our next steps beyond LEO.
You know what's really magical thinking? Clark Lindsey described it yesterday:
 
ЦитироватьThey are the ones living in a marvelously magical land in which:
 /– NASA's budget is $30B and growing rather than $18B and dropping;
 /– NASA's overhead and fixed costs are not counted in the cost of development of NASA's vehicles;
 /– development, overhead and fixed costs are not counted in the operation of NASA's vehicles (thus making for magically low marginal cost estimates);
 /– the public gives a damn about seeing a Saturn V wanna-be take three or four astronauts to the Moon every few years;
 /– and flying a totally expendable vehicle costing several billion dollars constitutes "spacefaring"
If these are the best arguments that can be made for SLS, it's doomed. But unfortunately, probably not before Congress insists on wasting a few billion more on it.



http://www.competitivespace.org/2011/11/04/the-sls-empire-strikes-back/

Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

Seerndv

#48
ЦитироватьЛогику создания собственной станции источники "Ъ" в космической отрасли объясняют несколькими факторами. Так, запуски пилотируемых кораблей "Союз-МС" с космодрома Восточный на наклонение 51,6 градуса (это наклонение МКС) сопряжены с большим риском для экипажа на этапе выведения: в случае нештатной ситуации космонавты окажутся в открытом море. Наклонение собственной орбитальной станции составит 64,8 градуса, а трасса полета на этапе выведения пролегает над сушей. Кроме того, параметры нахождения станции позволят доставлять грузы при помощи ракет, запущенных с военного космодрома Плесецк. Соответственно, Россия получит доступ к гражданскому космосу сразу с двух площадок и исключит потенциальные политические риски при использовании космодрома Байконур. "Новая станция будет находиться в геометрически выгодном расположении с возможностью расширенного сектора обзора поверхности Земли,— говорит собеседник "Ъ".— Со станции будет видно до 90% территории России и арктический шельф, а у МКС этот показатель не превышает 5%". Еще одной функцией новой станции источники "Ъ" называют летно-конструкторские испытания пилотируемых средств лунной инфраструктуры: "Фактически речь идет о создании некоего плацдарма — сначала аппараты будут доставляться на станцию, а уже после следовать к Луне".
http://www.aex.ru/fdocs/1/2014/11/17/25334/
- а танкеры и паром в таком случае разве не потребуются?  :o   :oops:
Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

mihalchuk

На мой взгляд, это чья-то тонкая провокация. Потому как за этим сразу следует логическая мысль: а зачем тогда "Восточный"? Переносим всё в Плесецк, и точка.

Seerndv

Цитироватьmihalchuk пишет:
На мой взгляд, это чья-то тонкая провокация. Потому как за этим сразу следует логическая мысль: а зачем тогда "Восточный"? Переносим всё в Плесецк, и точка.
- а по танкерам и сборке-стыковке на орбите возражения есть?  :oops:
Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

Seerndv

ЦитироватьРоссия будет строить окололунную станцию по модульному принципу

 
 
26 ноября, AEX.RU –  Российская космическая станция на орбите Луны будет строиться из модулей массой 25 тонн каждый. Об этом заявил заместитель генерального директора Космического центра им. Хруничева, генеральный конструктор КБ "Салют" Юрий Бахвалов,пишет ТАСС.
    
   "На орбиту Луны будут доставляться модули массой около 25 тонн, а сборка будет проводиться уже на орбите", - сказал он.
   По его словам, Космический центр принимает участие в конкурсе Роскосмоса на создание средств выполнения и доставки пилотируемой экспедиции к Луне. "Технические предложения должны быть разработаны до конца года ", - сказал Бахвалов.

http://novosti-kosmonavtiki.ru/forum/forum13/topic14519/?PAGEN_1=3
- надо полагать это ответ Лопоте на:

Цитировать- Конечно. Космонавтика дала нам генерацию фундаментальных знаний. Мы стали больше понимать, мы уже шапками никого не забрасываем, не декларируем утопические идеи. Человечество сегодня имеет ту энергетику, которую имеет и с которой дальше Марса мы в ближайшие десятилетия не сможем улететь. Луна, например, нам пока недоступна. Чтобы достичь поверхности Луны экипажем в три человека, нужна ракета грузоподъемностью не менее 130 - 150 тонн на нижнюю орбиту. К сожалению, таких носителей сегодня нет. А те носители, которые есть, не позволяют этого сделать. Мы сегодня создаем ракеты грузоподъемностью 20 тонн на нижней орбите, в скором будущем дойдем до 25 тонн, но, чтобы подлететь к Луне, требуются массы на околоземной орбите 75 тонн. А чтобы еще приземлиться и обратно улететь, нужно по крайней мере удвоить эту грузоподъемность.

http://www.aex.ru/fdocs/2/2014/11/26/25364/
- но тогда нужен паром и танкеры  :D
Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

SFN

Должны же здесь быть заправки! Но я их пока не нашел...

Seerndv

Круто! Только фотонного звездолёта и не хватает  8)  
А так и ядерные шаттлы, и наземные, и станции всех разливов - low orbit, lunar orbit, synchrononous orbit
Впрочем, есть тута space tug   - это они, видимо плутоний туды-сюды будут таскать  ;)  
Впрочем. вспомним проект нашего, т.с. отечественного space tug:

ЦитироватьЧто представляет собой буксир «Паром»? «Паром» – это многофункциональный многоразовый межорбитальный буксир, предназначенный для транспортировки на орбитальную станцию различных грузовых контейнеров и пилотируемого корабля «Клипер». Буксир «Паром» будет создаваться на базе модернизированных систем корабля «Союз». «Паром» имеет два активных стыковочных узла: один для стыковки к контейнеру или к кораблю «Клипер», а другой для стыковки к орбитальной станции. Буксир имеет двигательную установку, оснащен баками с долгохранимыми компонентами топлива и солнечными батареями для электропитания бортовых систем. Как работает межорбитальный буксир? Большую часть времени он находится в составе орбитальной станции. После выведения очередного грузового контейнера на рабочую околоземную орбиту буксир отстыковывается от станции и стыкуется с контейнером, а затем транспортирует его к орбитальной станции. Внутри буксира расположен гермоотсек, через который космонавты могут пройти с борта станции в герметичную часть контейнера для его разгрузки. По завершении работы с контейнером, после размещения в нем удаляемых грузов, «Паром» вновь уходит от станции и сбрасывает контейнер, который через некоторое время в результате торможения сходит с орбиты и сгорает в плотных слоях атмосферы. А буксир подхватывает новый контейнер и доставляет его к станции. Этот процесс повторяется многократно. Грузовой контейнер – достаточно простой и относительно дешевый элемент системы. Он имеет герметичный отсек для грузов и оборудования и негерметичный отсек, в котором на станцию доставляются компоненты топлива. Перекачка топлива из контейнера на станцию производится по магистралям, проложенным в буксире «Паром». Контейнер имеет минимальное количество служебного бортового оборудования. К основному из них относятся небольшой отсек с двигателями стабилизации и пассивный стыковочный узел. Контейнеры рассчитаны на запуск с помощью РН «Союз» и «Протон». Они могут доставлять полезный груз массой от 4 до 13 тонн. Для сравнения: максимальная масса грузов, доставляемых «Прогрессом», составляет немногим более 2 тонн. Таким образом, контейнер может заменять несколько «Прогрессов». Расчеты показывают, что использование «Парома» и грузовых контейнеров позволит снизить себестоимость выводимых на орбиту грузов в три-четыре раза по сравнению с эксплуатацией «Прогрессов». Вообще говоря, контейнеры могут быть самыми разнообразными, в зависимости от того, какие грузы необходимо доставить на орбитальную станцию. Контейнеры могут различаться по размерам и массе и выводиться на орбиту различными РН, в том числе и иностранными. Кроме контейнеров, грузом для «Парома» могут являться различные негерметичные платформы с крупногабаритной научной аппаратурой, модули орбитальной станции, а также корабль «Клипер». Для продления полетного ресурса «Парома» космонавты будут периодически проводить обслуживание бортового оборудования буксира и по мере необходимости менять вышедшую из строя аппаратуру. «Запчасти» для ремонта буксира будут доставляться грузовыми контейнерами. Кроме того, дозаправляться топливом «Паром» также будет из контейнеров. Запуск первого «Парома» мы планируем осуществить в 2009 г. Сначала он будет испытан и отработан на доставке к МКС грузовых контейнеров, а уже затем его можно будет использовать для транспортировки пилотируемого корабля «Клипер». Каковы основные параметры и характеристики буксира «Паром»? Стартовая масса буксира – до 12500 кг; «сухая» масса – 5990 кг. Геометрические характеристики: – длина по корпусу – 6550 мм; – максимальный диаметр отсеков – 3200 мм; – объем гермоотсека – 26 м3. Длительность автономного полета – до 180 сут. Количество циклов орбитальных переходов – до 60. Полетный ресурс – до 15 лет. Параметры орбиты выведения: – наклонение – 51.6–73°; – высота – 200 км. Ракетаноситель – «Союз-2-3».


- вид сбоку - таже заправка, но бочками  :D

Но КБ "Салют" явно что-то круче задумал ... и в два раза тяжелее :o
Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

mihalchuk

ЦитироватьSeerndv пишет:
Цитироватьmihalchuk пишет:
На мой взгляд, это чья-то тонкая провокация. Потому как за этим сразу следует логическая мысль: а зачем тогда "Восточный"? Переносим всё в Плесецк, и точка.
- а по танкерам и сборке-стыковке на орбите возражения есть?
Нет. Но зачем тогда высокоширотная станция? только потери в выводимой массе. особенно, если запускать на ГСО.

Seerndv

#55
Цитироватьmihalchuk пишет:
Нет. Но зачем тогда высокоширотная станция? только потери в выводимой массе.
особенно, если запускать на ГСО.
- секретная. для управления и ретрансляции сигналов на истребители спутников  ;)  
А если серьёзно, сам не понимаю.  :oops:  
А Бахваловское заявление вас больше не заинтересовало?
Цитировать
"На орбиту Луны будут доставляться модули массой около 25 тонн, а сборка будет проводиться уже на орбите", - сказал он.
Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

mihalchuk

ЦитироватьSeerndv пишет:
А Бахваловское заявление вас больше не заинтересовало?
Не воспринял серьёзно.

Seerndv

Цитироватьmihalchuk пишет:
Нет. Но зачем тогда высокоширотная станция? только потери в выводимой массе. особенно, если запускать на ГСО.
- не знаю. Но даже на форуме была такая тема:
http://novosti-kosmonavtiki.ru/forum/messages/forum10/topic1382/message50439/#message50439
"Высокоширотная орбитальная станция   "
Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)

Ded

Цитироватьmihalchuk пишет:
На мой взгляд, это чья-то тонкая провокация. Потому как за этим сразу следует логическая мысль: а зачем тогда "Восточный"? Переносим всё в Плесецк, и точка.
С Плесецка на наклонение 51? Это не провокация,это...
Все возможно

Seerndv

ЦитироватьМосква не намерена продолжать участие в проекте Международной космической станции (МКС). В нынешнем виде, уверен вице-премьер Дмитрий Рогозин, это проект является «прошедшим этапом» для России. Федеральному космическому агентству (Роскосмос) уже поручено к концу декабря подготовить обоснования по развертыванию собственной орбитальной станции и внести их на рассмотрение в правительство. А само развертывание чисто российской станции должно начаться не позднее 2017 года.
«Вопрос перспектив пилотируемой космонавтики - это уже не вопрос отрасли, а политических решений, - сообщил по этому поводу вице-премьер правительства Дмитрий Рогозин, отвечающий за оборонку. - Федеральному космическому агентству поручено подготовить обоснования по развертыванию собственной орбитальной станции и внести их на рассмотрение в правительство. Существующий на сегодняшний день технический задел достаточен для ее создания».
Впервые о возможности выхода России из проекта МКС заявил в 2012 году на аэрокосмическом салоне The Farnborough International Exhibition тогдашний руководитель «Роскосмоса» Владимир Поповкин. С его слов следовало, что Россия не только технически готова к постройке собственной орбитальной станции, но и уже ведет разработку нескольких новых модулей для МКС. Причем делается это с расчетом, что их можно будет использовать как базовые блоки для будущего поколения пилотируемых станций.
На этом собственно и строится сегодняшняя суть предложений «Роскосмоса» и научных организаций отрасли. Как видится специалистам, в период с 2017 по 2019 гг. Россия может развернуть в космосе полностью российскую станцию с наклонением орбиты 64,8 градуса. В первоначальной конфигурации она будет формироваться на базе многоцелевого лабораторного и узлового модулей, космического аппарата «ОКА-Т», а также кораблей «Союз-МС» и «Прогресс-МС».
Как рассказали телеканалу «Звезда» специалисты отрасли, «ОКА-Т» - автономный технологический модуль. Многоцелевая космическая лаборатория, работающая на орбите независимо от МКС. Ее созданием будет заниматься РКК «Энергия». Согласно техническому заданию, модуль будет состоять из герметичного отсека, научной лаборатории, шлюзовой камеры, стыковочного узла и негерметичного отсека для экспериментов в условиях открытого космоса. Закладываемая масса научного оборудования составит около 850 килограммов, как внутри аппарата, так и на его внешней поверхности. Время автономной работы от МКС должно составлять от 90 до 180 суток. После этого модуль будет стыковаться с основной станцией, экипаж которой займется обслуживанием научной аппаратуры, заправкой и другими операциями.
Первый полет «ОКА-Т» планируется на конец 2018 года. Так же в состав новой станции войдут Многоцелевой лабораторный (МЛМ) и энергетический модули. После 2020 года, станцию планируется «проабгрейдить» еще целым рядом дополнительных модулей и космическим аппаратам «ОКА-Т-2». В результате Россия должна будет получить полноценный аналог МКС.
 
 
3D-графика примерного облика станции к 2030 г.
Источник: tvzvezda.ru

Станция с такой высокоширотной орбитой, как объясняют в Роскосмосе, позволит обезопасить экипаж при пилотируемом пуске с космодрома «Восточный»: в случае нештатной ситуации, на этапе выведения, космонавты окажутся не в Тихом океане, а смогут приземлиться на сушу. Кроме того, для доставки грузов на станцию можно будет использовать и космодром «Плесецк», а главное, увеличить обзор территории России со станции до 90%, дав возможность контролировать Северный морской путь и арктический шельф.
В Роскосмосе утверждают, что создание новой станции не станет обременительным для бюджета. Большинство ее элементов создавалось в рамках развития российского сегмента МКС. Напомним, что в деле развертывания МКС Россия играет одну из ведущих с США ролей. Оно началось 20 ноября 1998 года. Тогда же был запущен ее первый модуль - функционально-грузовой блок «Заря». В декабре того же года корабль «Индевор» STS-88 вывел на орбиту соединительный модуль «Unity» и состыковал его с ФГБ «Заря». В июле 2000 года состав МКС пополнился третьим модулем. Им стал служебный модуль «Звезда». По своему назначению, все они стали основой российского сегмента МКС. Его собственно и планировалось развивать. На сегодняшний день Роскосмос тратит на ее содержание в шесть раз меньше, чем NASA (только в 2013 году на эти цели США выделили 3 млрд. долларов), хотя России принадлежит право на половину экипажа.
Однако обострение отношений России и Запада, введение торговых и политических санкций стали одним из поводов обособить дальнейшее развитие российской пилотируемой космонавтики. Как рассказали в Роскосмосе, в кооперации стран, эксплуатирующих МКС, по рекомендации российской стороны создана рабочая группа. Перед ней стоит цель определить дальнейшую судьбу МКС и установить сроки ее вывода из эксплуатации. Свою позицию по этому вопросу Роскосмос должен представить американской космической организации NASA до конца этого года. В частности, возможно создание малых станций для конкретных задач на околоземной орбите, международных станций в точках равновесия между Луной и Землей либо с обратной стороны Луны.
Что же касается России то она не планирует продлевать свое участие в этом проекте в 2020-2024 годах, как просят того США, а деньги для станции перенаправит на другие космические проекты.
В начале ноября руководитель Роскосмоса Олег Остапенко сообщил главе NASA Чарльзу Болдену, что окончательное решение о продлении или непродлении эксплуатации МКС до 2024 года будет принято Россией до конца года. В любом случае, как говорит Дмитрий Рогозин, мы полностью выполним взятые на себя международные обязательства в рамках проекта до 2020 года. В Роскосмое утверждают, что если будет «политическое одобрение» на создание собственной орбитальной станции, то продлевать свою работу на МКС Россия согласится только в коммерческих целях. Таких как сдача своего сегмента в аренду другим странам и отправка на орбиту космических туристов.

http://vpk.name/news/122444_kosmicheskii_razvod_pochemu_rossiya_pokidaet_mks.html?last#last

 
- уж не знаю, будут ли к ней танкеры пристыковываться  :oops:
Свободу слова Старому !!!
Но намордник не снимать и поводок укоротить!
Все могло быть еще  хуже (С)