Chandrayaan 2 -- GSLV Mk.III -- Шрихарикота -- 22.07.2019, 09:13 UTC

Автор Salo, 09.09.2012 15:58:37

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

hlynin

Выглянул из окна. Всё в порядке. Луна цела

tnt22

Цитировать Andrew Jones @AJ_FI 19 мин.19 минут назад

The Sun will set over the landing site of the Chandrayaan-2 mission Vikram lander within 2 days. As Vikram is not equipped with radioisotope heater units, any hope of contacting the spacecraft will die as temperatures approach ~minus 180 Celsius.


tnt22

https://www.isro.gov.in/update/19-sep-2019/update-chandrayaan-–-2
ЦитироватьSep 19, 2019

Update on Chandrayaan – 2

    [/li]
  • All Payloads of orbiter are powered.
  • Initial trials for orbiter Payloads are completed successfully.
  • Performance of all orbiter Payloads is satisfactory.
  • Orbiter continues to perform scheduled science experiments to complete satisfaction.
  • National level committee consisting of academicians and ISRO experts are analyzing the cause of communication loss with lander.

tnt22

https://spaceflightnow.com/2019/09/24/lro-view-of-chandrayaan-2-landing-site-obscured-by-shadows/
ЦитироватьLRO's view of Chandrayaan 2 landing site obscured by shadows
September 24, 2019 | Stephen Clark


NASA's Galileo spacecraft captured this view of the moon in 1992 on its mission to Jupiter. Credit: NASA

An overflight last week of the Chandrayaan 2 landing site on the moon by NASA's Lunar Reconnaissance Orbiter has turned up no clear sign of the lost Indian lander. Another flyover with better lighting conditions is scheduled next month.

LRO's high-resolution camera is searching for India's Vikram lander, part of the Indian Chandrayaan 2 lunar mission, after ground teams lost contact with the spacecraft during a lunar landing attempt Sept. 6.

"LRO flew over the area of the Vikram landing site on Sept. 17 when local lunar time was near dusk; large shadows covered much of the area," NASA said in a statement. "The Lunar Reconnaissance Orbiter Camera (LROC) acquired images around the targeted landing site, but the exact location of the lander was not known so the lander may not be in the camera field of view."

In any case, hopes of contacting the Vikram lander have waned since the Sept. 6 landing attempt. Officials from the Indian Space Research Organization said imagery from the country's Chandrayaan 2 orbiter, which launched in tandem with the Vikram lander, had located the landing craft on the moon.

"All possible efforts are being made to establish communication with (the) lander," ISRO said in a statement Sept. 10.

ISRO has not released any of the Chandrayaan 2 images claimed to show the Vikram lander, and officials did not confirm whether the lander appeared to be intact on the lunar surface, or if the imagery suggested the spacecraft crashed. The final telemetry data from Vikram indicated it was plummeting toward the moon at high speed.

Even if the Vikram lander landed intact, the spacecraft was only designed for a two-week mission, leaving little hope of recontacting the lander. The sun has set on the Vikram landing site, located near the lunar south pole, and the lander was not designed to survive the frigid, dark lunar night.

NASA said the LRO camera team is analyzing the new imagery to see if the Vikram lander is visible amid the long shadows at the landing site.

"LRO will next fly over the landing site on October 14 when lighting conditions will be more favorable," NASA said. "NASA will make the results of the Sept. 17 flyover available as soon as possible after a necessary period of validation, analysis, and review."

The Vikram lander carried a rover named Pragyan — the Sanskrit word for "wisdom" — and several scientific instruments, including cameras, seismic sensors, rock composition payloads, and an underground thermal conductivity probe. Vikram, named for the father of India's space program, also carried a U.S.-provided laser reflector, which NASA intended to use to make precise measurements of the distance between the Earth and the moon.

The Chandrayaan 2 orbiter, which continues its mission, carries its own science instruments. The orbiter's payloads include a high-resolution mapping camera and sensors designed search for water molecules on the moon.

Serge3leo

Цитироватьtnt22 написал:
high-resolution mapping camera
Вроде индийцы официально писали, что питание на все приборы подали нормально, но кадров чтой-то нет.

tnt22

https://www.nasa.gov/image-feature/goddard/2019/obscured-in-the-lunar-highlands
ЦитироватьSept. 26, 2019

Obscured in the Lunar Highlands?


The Chandrayaan-2 lander, Vikram, attempted a landing Sept. 7 (Sept. 6 in the United States), on a small patch of lunar highland smooth plains between Simpelius N and Manzinus C craters. Vikram had a hard landing and the precise location of the spacecraft in the lunar highlands has yet to be determined. The scene above was captured from a Lunar Reconnaissance Orbiter Camera (LROC) Quickmap fly-around of the targeted landing site image width is about 150 kilometers across the center.
Credits: NASA/Goddard/Arizona State University

The lander, Vikram, was scheduled to touch down on Sept. 6 at 4:24 pm Eastern Daylight Time. This event was India's first attempt at a soft landing on the Moon. The site was located about 600 kilometers (370 miles) from the south pole in a relatively ancient terrain (70.8°S latitude, 23.5°E longitude). In order to visualize the site, take a quick fly-around. The Lunar Reconnaissance Orbiter (LRO) passed over the landing site on Sept. 17 and acquired a set of high resolution images of the area; so far the LROC team has not been able to locate or image the lander.  It was dusk when the landing area was imaged and thus large shadows covered much of the terrain; it is possible that the Vikram lander is hiding in a shadow. The lighting will be favorable when LRO passes over the site in October and once again attempts to locate and image the lander.


A view looking down on the Vikram landing site (image acquired before the landing attempt), image width 87 kilometers (54 miles) .
Credits: NASA/Goddard/Arizona State University


A wide view of a series of Lunar Reconnaisance Orbiter Camera's narrow angle camera images collected on Sept. 17 showing the area of the targeted Vikram landing site. The pixel scale is 28314 pixels by 1041 lines. The resolution is 34 meters per pixel. The full resolution mosaic can be found at: http://lroc.sese.asu.edu/posts/1128. Note this mosaic is quite large (28314 pixels by 57851 lines) with approximately 900 million illuminated pixels (1.25 meter pixels, 1000 meter grid, polar stereographic projection)
Credits: NASA/Goddard/Arizona State University

Last Updated: Sept. 26, 2019
Editor: Karl Hille

tnt22

https://tass.ru/kosmos/6957838
Цитировать3 ОКТ, 09:51
Индия надеется установить контакт с модулем после его жесткой посадки на Луне
Глава Индийской организации космических исследований Кайласавадиву Сиван считает, что связь с аппаратами можно восстановить с началом нового лунного дня

НЬЮ-ДЕЛИ, 3 октября. /ТАСС/. Индийская организация космических исследований (ISRO) намерена продолжить попытки связаться со спускаемым модулем "Викрам", совершившим 7 сентября жесткую посадку на спутнике Земли, с наступлением лунного дня. Об этом сообщил журналистам глава ISRO доктор Кайласавадиву Сиван.

"Связаться с "Викрамом" сейчас невозможно, так как в том районе Луны началась ночь. Но ISRO может начать поиски "Викрама", как только лунная ночь закончится", - приводит в четверг слова Сивана газета Free Press Journal.

Ранее индийское космическое ведомство сообщало, что срок работы посадочного модуля, как и находящегося на его борту небольшого лунохода "Прагьян" составляет всего 1 лунный день (14 земных суток), поскольку эти аппараты получают энергию от солнечных батарей.

По данным издания, попытки связаться с ними были прекращены около 10 дней назад, когда в районе посадки началась ночь. Однако в ISRO не исключает, что связь с аппаратами можно восстановить с началом нового лунного дня.

"Викрам" должен был мягко сесть на поверхность спутника Земли 7 сентября, но на высоте 2 км над Луной аппарат отклонился от намеченной траектории посадки и потерял контакт с центром управления полетом, после чего совершил жесткую посадку. Посадочный модуль, входивший в состав миссии "Чандраян-2", должен был доставить на Луну 27-килограммовый луноход "Прагьян", которому предстояло исследовать район Южного полюса спутника Земли. Орбитальный зонд "Чандраян-2" тем временем продолжает работу на орбите Луны.

Космическое ведомство Индии создало специальный комитет из ученых и экспертов различных учреждений для анализа причин потери связи со спускаемым аппаратом. Ожидается, что их доклад будет представлен в ближайшее время.

tnt22


tnt22

https://www.isro.gov.in/update/10-oct-2019/solar-flare-observed-solar-x-ray-monitor-chandrayaan-2
ЦитироватьOct 10, 2019
Solar flare observed by the Solar X-ray Monitor on Chandrayaan-2

Many violent phenomena continuously keep occurring on surface of the Sun and its atmosphere known as the corona. This solar activity follows an eleven-year cycle, which means, it goes through its 'solar maxima' and 'solar minima' once every eleven years. While the cumulative emission of solar X-rays emitted over a year varies with the solar cycle, these are often punctuated with extremely large x-ray intensity variations over very short periods, few minutes to hours. Such episodes are known as solar flares.

Chandrayaan-2 orbiter utilizes X-rays emitted by the Sun in a clever way to study elements on the lunar surface. Solar X-rays excite atoms of constituent elements on the lunar surface. These atoms when de-excited emit their characteristic X-rays (a fingerprint of each atom). By detecting these characteristic X-rays, it becomes possible to identify various major elements of the lunar surface. However, in order to determine their concentration, it is essential to have simultaneous knowledge of the incident solar X-ray spectrum.

The Chandrayaan-2 orbiter carries two instruments, Chandrayaan 2 Large Area Soft X-ray Spectrometer (CLASS) and Solar X-ray Monitor (XSM), to measure the lunar elemental composition using this technique. Here, the CLASS payload detects the characteristic lines fr om the lunar surface and the XSM payload simultaneously measures the solar X-ray spectrum.

Currently, the solar cycle is heading towards minima and the Sun has been extremely quiet for past few months. On 30th September 2019 00:00 UTC - 1st October 2019 23:59 UTC, a series of small flares were observed by XSM.


The figure shows the solar X-ray flux as measured by XSM (in blue) during this period, and for comparison, the flux measured by X-ray sensor on the Geostationary Operational Environmental Satellite (GOES-15) is also shown (in orange), which is considered the standard for solar X-ray intensity measurement.It shows that XSM is able to detect the intensity variations of the Sun much beyond the sensitivity lim it of GOES.  The gaps seen in GOES light curve around 09:00 UTC are due to instrumental artifacts. The GOES data was obtained from the National Center for Environmental Information of National Oceanic and Atmospheric Administration, USA.

Apart from the better sensitivity, XSM also measures the spectrum of solar X-ray in the energy range of 1 - 15 keV with highest energy resolution so far for any broadband solar X-ray spectrometer over intervals as short as 1 second.

Although this solar flare observed at present may not enable the study of the lunar surface composition due to the large angle between Sun, lunar surface and Chandrayaan-2 (close to 90 deg in this case against a desirable low value, close to zero), such XSM observations provide very useful data to understand various processes on the Sun.

tnt22

https://www.isro.gov.in/update/17-oct-2019/chandrayaan-2-begins-spectroscopic-studies-of-lunar-surface
ЦитироватьOct 17, 2019
Chandrayaan-2 begins spectroscopic studies of lunar surface

Imaging Infrared Spectrometer (IIRS) on-board Chandrayaan-2 is designed to measure the reflected sunlight and emitted part of Moon light from the lunar surface in narrow and contiguous spectral channels (bands) ranging from ~800 – 5000 nanometer (0.8-5.0 micrometer (µm)). It uses a grating to split and disperse the reflected sunlight (and emitted component) into different spectral bands. The major objective of IIRS is to understand the origin and evolution of the Moon in a geologic context by mapping the lunar surface mineral and volatile composition using signatures in the reflected solar spectrum.

The first illuminated image of the lunar surface was acquired by IIRS. The image covers part of the lunar farside in the northern hemisphere. Few prominent craters are seen in the image (Sommerfield, Stebbins and Kirkwood).



Preliminary analysis suggests that IIRS could successfully measure the variations in the reflected solar radiation that bounces off the lunar surface from different kinds of surface types, namely, crater central peaks (e.g., Stebbins), crater floors (e.g., Stebbins and Sommerfield), very fresh reworked ejecta associated with small craterlets within the crater floor of a large crater (e.g., Sommerfield) and also the sun-illuminated inner rims of craters (e.g., Kirkwood). The variations in the spectral radiance are primarily due to the mineralogical/compositional variations that exist in the lunar surface and also due to the effect of space weathering. More detailed analysis that follows, is expected to yield important results on the heterogeneity of lunar surface composition.

tnt22

https://www.isro.gov.in/update/22-oct-2019/initial-imaging-and-observations-chandrayaan-2-dual-frequency-synthetic-aperture
ЦитироватьOct 22, 2019

Initial imaging and observations by Chandrayaan-2 Dual-Frequency Synthetic Aperture Radar (DF-SAR)

]Moon has been continuously bombarded by meteorites, asteroids and comets since its formation. This has resulted in the formation of innumerable impact craters that form the most distinct geographic features on its surface. Impact craters are approximately circular depressions on the surface of the  moon, ranging fr om small, simple, bowl-shaped depressions to large, complex, multi-ringed impact basins.In contrast to volcanic craters, which result from explosion or internal collapse, impact craters typically have raised rims and floors that are lower in elevation than the surrounding terrain. The study of the nature, size, distribution and composition of impact craters and associated ejecta features reveal valuable information about the origin and evolution of craters. Weathering processes result in many of the crater physical features and ejecta material get covered by layers of regolith, making some of them undetectable using optical cameras. Synthetic Aperture Radar (SAR) is a powerful remote sensing instrument for studying planetary surfaces and subsurface due to the ability of the radar signal to penetrate the surface. It is also sensitive to the roughness, structure and composition of the surface material and the buried terrain.

Previous lunar-orbiting SAR systems such as the S-band hybrid-polarimetric SAR on ISRO's Chandrayaan-1 and the S & X-band hybrid-polarimetric SAR on NASA's LRO, provided valuable data on the scattering characterisation of ejecta materials of lunar impact craters. However, L & S band SAR on Chandraayan-2 is designed to produce greater details about the morphology and ejecta materials of impact craters due to its ability of imaging with higher resolution (2 - 75m slant range) and full-polarimetric modes in standalone as well as joint modes in S and L-band with wide range of incidence angle coverage (9.5° - 35°). In addition, the greater depth of penetration of L-band (3-5 meters) enables probing the buried terrain at greater depths. The L & S band SAR payload helps in unambiguously identifying and quantitatively estimating the lunar polar water-ice in permanently shadowed regions.

A convenient approach towards discerning the radar information is to prepare images using two derived parameters, 'm' the degree of polarization and 'ä' the relative phase between the transmit-receive polarized signals.

Figure 1 shows the m-ä decomposition images of the first datasets acquired over lunar south polar regions in L-band high-resolution (2m slant-range resolution) hybrid polarimetric mode. It produces colour composite images wh ere 'even-bounce', 'volume or diffused' and 'odd-bounce' scatterings of a pixel are represented in red (R), green (G), and blue (B) image planes, respectively. It is important to note that the obtained resolution is one-order better than the earlier best by a lunar-radar.

  
Figure 1: Conceptual diagram explaining different types of Radar scattering mechanismson lunar surface and sub-surface

Figure 2 presents many interesting facts about the secondary craters of different ages and origins in the lunar south polar region. The yellowish tone around crater rims in the image shows ejecta fields. The distribution of ejecta fields, whether uniformly distributed in all directions or oriented towards a particular side of a crater, indicates the nature of the impact.  The image shows craters of vertical impact and oblique impact on the top-right and bottom-right, respectively. Similarly, the roughness of the ejecta materials associated with the impact craters indicates the degree of weathering a crater has undergone. Three similar sized craters along a row on the bottom-right of the image shows examples of young crater, moderately weathered crater and an old degraded crater. Many of the ejecta fields seen in the image are not visible in high-resolution optical image over the same region, indicating the ejecta fields are buried beneath regolith layers.


Figure 2

Chandrayaan-2 Orbiter's DF-SAR has been operated in full-polarimetry mode- a gold standard in SAR polarimetry, and is the first-ever by any planetary SAR instrument. Figure 3 shows an L-band fully-polarimetric, 20m slant-range resolution image of Pitiscus-T crater. The image is a colour composite of different transmit-receive polarization responses of the imaged region.


Figure-3

tnt22

https://ria.ru/20191023/1560095530.html
ЦитироватьНАСА не нашло на Луне следов индийского модуля "Викрам", сообщил ученый
08:48 23.10.2019

НЬЮ-ДЕЛИ, 23 окт – РИА Новости. Национальное управление по аэронавтике и исследованию космического пространства (НАСА) США не смогло обнаружить на Луне следов индийского спускаемого модуля "Викрам", который 7 сентября совершил жесткую посадку на спутнике Земли, заявил агентству PTI представитель американского космического агентства, учёный Ноа Петро.

Индийский космический аппарат "Чандраян-2" вышел на орбиту Луны 20 августа. "Викрам" должен был совершить контролируемый спуск на поверхность Луны. Снижение аппарата проходило нормально, однако на высоте 2,1 км произошли сбой и отклонение от маршрута, детали которых пока неясны. Затем связь "Викрама" с командным пунктом была потеряна. Сейчас сотрудники Индийской организации космических исследований пытаются восстановить контакт с ним.

"Лунный орбитальный зонд 14 октября сделал снимки района Луны, где совершил посадку посадочный модуль "Викрам", однако на них не удалось обнаружить каких-либо следов аппарата", - сказал Петро.

В НАСА полагают, это связано с тем, что "Викрам" может находиться в тени, либо за пределами зоны поисков. "В силу своего местоположения (примерно 70 градусов южной широты) на этот участок Луны всегда падает тень", - пояснил другой представитель НАСА Джон Келлер.
"Викрам" должен был доставить на поверхность Луны небольшой шестиколесный ровер "Прагьян" весом около 27 килограммов. Предполагалось, что последний проработает там в течение одного лунного дня, изучая минералогический и элементный состав лунной поверхности, а также регистрируя местную сейсмическую активность.

Стоимость проекта "Чандраян-2", который является полностью индийским, составила порядка 125 миллионов долларов. В случае успеха Индия стала бы четвертой страной в мире (после СССР, США и Китая), совершившей мягкую посадку на поверхности естественного спутника Земли.
[свернуть]

tnt22

https://www.isro.gov.in/update/31-oct-2019/detection-of-argon-40-lunar-exosphere
ЦитироватьOct 31, 2019

Detection of Argon-40 in the lunar exosphere

Planetary scientists prefer to call the thin gaseous envelope around the Moon as the 'Lunar exosphere' since it is so tenuous that the gas atoms very rarely collide with each other. While the Earth's atmosphere near the mean sea level contains ~1019 atoms in a cubic centimetre of volume, the lunar exosphere contains ~ 104 to 106atoms in a cubic centimetre.

Argon-40 (40Ar), which is one of the isotopes of the noble gas Argon, is an important constituent of the lunar exosphere. It originates from the radioactive disintegration of Potassium-40 (40K), which has a half-life of ~1.2 X 109 years. The radioactive 40K nuclide, which is present deep below the lunar surface, disintegrates to 40Ar, which, in turn, diffuses through the intergranular space and makes way up to the lunar exosphere through seepages and faults.



Schematic of the origin and dynamics of 40Ar in lunar exosphere

The Chandra's Atmospheric Composition Explorer-2 (CHACE-2) payload aboard the Chandrayaan-2 orbiter, is a neutral mass spectrometer-based payload which can detect constituents in the lunar neutral exosphere in the range of 1-300 amu (atomic mass unit). As part of its early operation, it has detected 40Ar in the lunar exosphere from an altitude of ~100 km, capturing the day-night variations of concentration. 40Ar being a condensable gas at the temperatures and pressures that prevail on the lunar surface, condenses during lunar night. After lunar dawn, the 40Ar starts getting released to the lunar exosphere (blue shaded region in figure).


Variation of Argon-40 observed during one orbit of Chandrayaan-2 during dayside and nightside of the Moon. The observed partial pressure has to be refined for the background and other effects to infer the density of lunar exospheric argon. The observations when Chandrayaan-2 was on the nightside is indicated by the black solid rectangle at the top of the panel and the two vertical dashed lines. Being in a polar orbit, Chandrayaan-2 enters the dayside of the Moon crossing the north pole, traverses through the dayside and enters the nightside after crossing the southpole.

zandr


ЦитироватьISRO's Chandrayaan-2 begins spectroscopic studies of lunar surface          
                          SPACE and ISRO news
1:37
Опубликовано: 19 окт. 2019 г.
The first illuminated image of the lunar surface was acquired by IIRS. The image covers part of the lunar farside in the northern hemisphere. Few prominent craters are seen in the image (Sommerfield, Stebbins and Kirkwood).
Preliminary analysis suggests that IIRS could successfully measure the variations in the reflected solar radiation that bounces off the lunar surface from different kinds of surface types, namely, crater central peaks (e.g., Stebbins), crater floors (e.g., Stebbins and Sommerfield), very fresh reworked ejecta associated with small craterlets within the crater floor of a large crater (e.g., Sommerfield) and also the sun-illuminated inner rims of craters (e.g., Kirkwood).

zandr


ЦитироватьChandrayaan-2 | Initial imaging and observations by Dual-Frequency Synthetic Aperture Radar (DF-SAR)          
                          SPACE and ISRO news
3:47
Опубликовано: 23 окт. 2019 г.
Сhandraayan-2 is designed to produce greater details about the morphology and ejecta materials of impact craters due to its ability of imaging with higher resolution (2 - 75m slant range) and full-polarimetric modes in standalone as well as joint modes in S and L-band with wide range of incidence angle coverage (9.5° - 35°). In addition, the greater depth of penetration of L-band (3-5 meters) enables probing the buried terrain at greater depths. The L & S band SAR payload helps in unambiguously identifying and quantitatively estimating the lunar polar water-ice in permanently shadowed regions.
A convenient approach towards discerning the radar information is to prepare images using two derived parameters, 'm' the degree of polarization and 'δ' the relative phase between the transmit-receive polarized signals. These parameters are used to generate colour composite images with 'even-bounce', 'volume or diffused' and 'odd-bounce' scatterings of a pixel represented in red (R), green(G), and blue (B) image planes, respectively. The genesis of the scattering mechanism

aaa1

ЦитироватьСеверокорейские хакеры подозреваются в том, что они стояли за атакой на космическое агентство Индии в сентябре, когда индийская лунная миссия Chandrayaan-2 закончилась неудачей ("Чандраян-2" - вторая автоматическая межпланетная станция Индийской организации космических исследований для исследования Луны - Л.Н.).
Индийская организация космических исследований, возможно, также была предупреждена о кибератаке, сказали консультанты по кибербезопасности, сообщает Financial Times.
Связь между неудавшейся миссией Chandrayaan-2 и северокорейскими хакерами была установлена менее чем через месяц после того, как индийская АЭС Куданкулам в штате Тамилнад, возможно, подверглась северокорейской атаке, говорится в докладе южнокорейской разведывательной организации Issuemakers Lab.

http://forum.militaryparitet.com/viewtopic.php?id=27202

tnt22

https://www.isro.gov.in/update/13-nov-2019/topographic-mapping-using-tmc-2-of-chandrayaan-2-initial-results
ЦитироватьNov 13, 2019

Topographic Mapping Using TMC-2 of Chandrayaan-2: Initial Results

Terrain Mapping Camera-2 (TMC-2) is a follow-on of the TMC on-board Chandrayaan-1. TMC-2 provides images (0.4μm to 0.85μm) at 5m spatial resolution & stereo triplets (fore, nadir and aft views) from a 100 km orbit for preparing Digital Elevation model (DEM) of the complete lunar surface.

The triplet images from TMC-2 when processed into Digital Elevation Models, enable mapping of surface landform morphologies. These include
    [/li]
  • Craters (formed by impactors)
  • Lava tubes (potential sites for future habitability)
  • Rilles (furrows formed by  lava channels or collapsed lava tubes)
  • Dorsa or wrinkle ridges (formed mostly in Mare regions depicting cooling of and contraction of basaltic lava)
  • Graben structures (depicts the structural dislocations on the lunar surface )
  • Lunar Domes/ Cones (denoting localized vents of past volcanism on the Moon).
The derived information facilitates estimation of dimensions of above features and its comparison for reconstructing the morpho-structural framework, crater characterization to derive impact geometries, surface age determination through Crater Size –Frequency Distribution (CSFD) methods, Rheological analysis based on the derived morphometric parameters, Lunar reflectance estimation etc.




tnt22

Цитироватьchandrayaan 2 orbit Detection of Argon-40 in the lunar exosphere | ISRO

ISRO LIVE

1 нояб. 2019 г.
https://www.youtube.com/embed/C_t099MNJ9M (0:57)

tnt22


Serge3leo

"As a result, Vikram hard landed within 500 m of the designated landing site."

Это расчёт? Или я что-то пропустил и они (или  LRO) так и нашли Викрам на поверхности?