Solar Probe Plus – Delta IV H/Star-48BV – Canaveral SLC-37B – 12.08.2018 в 07:31 UTC

Автор che wi, 06.01.2014 22:46:44

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

instml

Краткий план таков:

July 31, 2018: Launch
September 28, 2018: Venus Flyby #1
November 1, 2018: Perihelion #1
November 2, 2024: Venus Flyby #7
December 19, 2024: Perihelion #22 First Close Approach
Go MSL!

zandr

http://tass.ru/kosmos/4298343
ЦитироватьСША назвали зонд, которому предстоит исследовать Солнце, в честь астрофизика Паркера

© Johns Hopkins University Applied Physics Laboratory
ВАШИНГТОН, 31 мая. /Корр. ТАСС Дмитрий Кирсанов/. Национальное управление США по аэронавтике и исследованию космического пространства (NASA) приняло решение назвать отправляемую к Солнцу автоматическую межпланетную станцию в честь американского астрофизика Юджина Паркера.

Первооткрыватели, рекордсмены, космонавты, астронавты и туристы — мы собрали информацию обо всех, кто когда-либо совершал космические полеты
Об этом сообщил на торжественной церемонии в Университете Чикаго (штат Иллинойс), посвященной официальному объявлению о предстоящей отправке упомянутого зонда к Солнцу, руководитель научного директората NASA Томас Цурбухэн.
В состоявшемся мероприятии принял участие и 90-летний Паркер, который до сих пор ведет научную деятельность в Университете Чикаго. Паркер одним из первых специалистов в мире занимался исследованием солнечного ветра. С 1967 года он является членом Национальной академии наук США. Предполагается, что зонд Паркера подлетит в семь раз ближе к Солнцу, чем какой-либо другой из космических аппаратов, ранее отправлявшихся человеком.
Запуск станции состоится в промежутке между 31 июля и 19 августа 2018 года. Планируется, что зонд в ноябре будущего года приблизится к Солнцу на расстояние в 6,4 млн км. Это означает, что аппарат будет находиться в пределах короны Солнца, то есть внешних слоев его атмосферы, где температура может достигать 500 тыс. кельвинов (около 500 тыс. градусов по Цельсию) и даже нескольких миллионов кельвинов.
По замыслу американских ученых, в период по июнь 2025 года зонд совершит 24 витка по орбите вокруг Солнца, разгоняясь до скорости 724 тыс. км в час. На каждый такой виток у него будет уходить 88 дней.
На борту аппарата стоимостью порядка $1,5 млрд будет находиться четыре комплекта научных инструментов. При помощи этой аппаратуры специалисты рассчитывают, в частности, осуществить различные измерения солнечной радиации. Кроме того, зонд должен будет передать фотоснимки, которые станут первыми, сделанными в пределах солнечной короны. Оборудование зонда будет защищено оболочкой из углепластика толщиной 11,43 см, позволяющей выдержать температуру до примерно 1,4 тыс. градусов по Цельсию.
NASA обещает, что миссия произведет революцию в представлении человека о процессах, протекающих на Солнце. Претворение в жизнь намеченных планов позволит внести "фундаментальный вклад" в понимание причин "нагревания солнечной короны", а также возникновения солнечного ветра (потока ионизированных частиц, истекающего из солнечной короны) и "ответить на критически важные вопросы в гелиофизике, которые уже на протяжении нескольких десятилетий имеют высший приоритет", убеждено NASA. Как оно подчеркнуло, информация с борта аппарата будет иметь огромную ценность и с точки зрения подготовки дальнейших пилотируемых полетов за пределы Земли, поскольку позволит прогнозировать "радиационную обстановку, в которой предстоит работать и жить будущим покорителям космоса".


instml

#23
PARKER SOLAR PROBE

Go MSL!



Дем

July 31, 2018: Launch
September 28, 2018: Venus Flyby #1
November 1, 2018: Perihelion #1

March 31, 2019: Perihelion #2
August 28, 2019: Perihelion #3
December 22, 2019: Venus Flyby #2
January 24, 2020: Perihelion #4
June 2, 2020: Perihelion #5
July 6, 2020: Venus Flyby #3
September 22, 2020: Perihelion #6

January 13, 2021: Perihelion #7
February 16, 2021: Venus Flyby #4
April 24, 2021: Perihelion #8
August 5, 2021: Perihelion #9
October 11, 2021: Venus Flyby #5
November 16, 2021: Perihelion #10

February 21, 2022: Perihelion #11
May 28, 2022: Perihelion #12
September 1, 2022: Perihelion #13
December 6, 2022: Perihelion #14

March 13, 2023: Perihelion #15
June 17, 2023: Perihelion #16
August 16, 2023: Venus Flyby #6
September 23, 2023: Perihelion #17
December 24, 2023: Perihelion #18

March 25, 2024: Perihelion #19
June 25, 2024: Perihelion #20
September 25, 2024: Perihelion #21
November 2, 2024: Venus Flyby #7
December 19, 2024: Perihelion #22 First Close Approach

March 18, 2025: Perihelion #23
June 14, 2025: Perihelion #24
Летать в космос необходимо. Жить - не необходимо.

instml

Cool Power

Posted on 06/21/2017 09:00:23 | Views: 845

As NASA's Parker Solar Probe spacecraft begins its first historic encounter with the sun's corona in late 2018—flying closer to our star than any other mission in history—a revolutionary cooling system will keep its solar arrays at peak performance, even in extremely hostile conditions.

Every instrument and system on board Parker Solar Probe (with the exception of four antennas and a special particle detector) will be hidden from the sun behind a breakthrough thermal protection system (TPS)—an eight-foot diameter shield that the spacecraft uses to defend itself against the intense heat and energy of our star.

Every system will be protected, that is, except for the two solar arrays that power the spacecraft. When the spacecraft is closest to the sun, the solar arrays will be receiving 25 times the solar energy they would while orbiting Earth, and the temperature on the TPS will reach more than 2,500F (1,370C). The cooling system will keep the arrays at a nominal temperature of 320F (160C) or below.

"Our solar arrays are going to operate in an extreme environment that other missions have never operated in before," said the Johns Hopkins Applied Physics Lab's Mary Kae Lockwood, spacecraft system engineer for Parker Solar Probe.



New Innovations to Survive the Inferno

The very outermost edges of the solar arrays are bent upward, and when the spacecraft is closest to the sun, these small slivers of array will be extended beyond the protection of the TPS in order to produce enough power for the spacecraft's systems.

The incredible heat of our star would damage conventional spacecraft arrays. So, like many other technological advances created especially for this mission, a first-of-its-kind actively cooled solar array system was developed by APL, in partnership with United Technologies Aerospace Systems (UTAS) in Windsor Locks, Connecticut (which manufactured the cooling system) and SolAero Technologies of Albuquerque, New Mexico (which produces the solar arrays).

"This is all new," Lockwood said of the innovations related to the actively cooled solar array system. "NASA funded a program for Parker Solar Probe that included technology development of the solar arrays and their cooling system. We worked closely with our partners at UTAS and SolAero to develop these new capabilities, and we came up with a very effective system."

http://parkersolarprobe.jhuapl.edu/News-Center/admin/Press-Releases/images/articles/sacs-at-gsfc_tvac-3414.jpg

http://parkersolarprobe.jhuapl.edu/News-Center/admin/Press-Releases/images/articles/sacs-at-gsfc_tvac-3273.jpg

The Parker Solar Probe cooling system has several components: a heated accumulator tank that will hold the water during launch ("If water was in the system, it would freeze," Lockwood said); two-speed pumps; and four radiators made of titanium tubes (which won't corrode) and sporting aluminum fins just two hundredths of an inch thick. As with all power on the spacecraft, the cooling system is powered by the solar arrays—the very arrays it needs to keep cool to ensure its operation. At nominal operating capacity, the system provides 6,000 watts of cooling capacity—enough to cool an average-sized living room.

Somewhat surprisingly, the coolant used is nothing more than regular pressurized water—approximately five liters, deionized to remove minerals that could contaminate or harm the system. Analysis showed that, during the mission, the coolant would need to operate between 50F (10C) and 257F (125C)—and few liquids can handle those ranges like water. "Part of the NASA technology demonstration funding was used by APL and our partners at UTAS to survey a variety of coolants," said Lockwood. "But for the temperature range we required, and for the mass constraints, water was the solution." The water will be pressurized, which will raise its boiling point above 257F.

The solar arrays feature their own technical innovations. "We learned a lot about solar array performance from the [APL-built] MESSENGER spacecraft, which was the first to study Mercury," said Lockwood. "In particular, we learned how to design a panel that would mitigate degradation from ultraviolet light."

The cover glass on top of the photovoltaic cells is standard, but the way the heat is transferred from the cells into the substrate of the panel, the platen, is unique. A special ceramic carrier was created and soldered to the bottom of each cell, and then attached to the platen with a specially-chosen thermally conductive adhesive to allow the best thermal conduction into the system while providing the needed electrical insulation.



From Ice to Fire: Launch Challenges

While the extraordinary heat of the sun will be the spacecraft's most intense challenge, the minutes immediately following launch are actually one of the spacecraft's most critical early performance sequences.

When Parker Solar Probe launches on board a ULA Delta IV Heavy rocket from Cape Canaveral Air Force Station, Florida, in the summer of 2018, the cooling system will undergo wide temperature swings. "There's a lot to do to make sure the water doesn't freeze," said Lockwood.

First, temperatures of the solar arrays and cooling system radiators will drop from that in the fairing (about 60F, or 15C) to temperatures ranging from -85F to -220F (-65C to -140C) before they can be warmed by the sun. The pre-heated coolant tank will keep the water from freezing; the specially designed radiators—designed to reject heat and intense temperatures at the sun—will also survive this bitter cold, thanks to a new bonding process and design innovations.

Less than 60 minutes later, the spacecraft will separate from the launch vehicle, and begin the post separation sequence. It will rotate itself to point at the sun; the solar arrays will release from their launch locks; the arrays will rotate to point to the sun; a latch valve will open to release the warm water into two of the four radiators and the solar arrays; the pump will turn on; the spacecraft will rotate back to a nominal pointing orientation, warming up the two coldest and unactivated radiators; and power from the cooled solar arrays will begin recharging the battery.

In another first, this complex and critical series of tasks will be completed autonomously by the spacecraft, without any input from mission control.

The water for the two unactivated radiators will remain in the storage tank for the first 40 days of flight; after that, the final two radiators will be activated.

"One of the biggest challenges in testing this is those transitions from very cold to very hot in a short period of time," Lockwood said. "But those tests, and other tests to show how the system works when under a fully-heated TPS, correlated quite well to our models."

Thanks to testing and modeling, the team studied data and increased the thermal blanketing on the first two radiators to be activated, in order to balance maximizing their capacity at the end of the mission, and further reduce the risk of water freezing early in the mission.



Keeping Cool, Autonomously

When Parker Solar Probe is hurtling past the sun at some 450,000 miles an hour (724,000 KPH), it will be 90 million miles from mission controllers on Earth—too far for the team to "drive" the spacecraft. This means that adjustments to how the spacecraft is protecting itself with the TPS need to be handled by Parker Solar Probe's onboard guidance and control systems. These systems use new and effective autonomous software to allow the spacecraft to instantly alter its pointing to maximize protection from the sun. This autonomous capability is critical to the operation of the spacecraft's solar arrays, which must be constantly adjusted for optimal angle as Parker Solar Probe hurdles through the sun's harsh, superheated corona.

"During solar encounters, very small changes in the wing angle of the solar array can vastly change cooling capacity needed." Lockwood said that a one degree change in the array angle of one wing would require 35 percent more cooling capacity.

The constant challenge is to make sure the spacecraft and the arrays are staying cool.

"There's no way to make these adjustments from the ground, which means it has to guide itself," Lockwood said. "APL developed a variety of systems—including wing angle control, guidance and control, electrical power system, avionics, fault management, autonomy, and flight software—that are critical parts working with the solar array cooling system."

Added Lockwood: "This spacecraft probably is one of the most autonomous systems ever flown."

That autonomy, along with the new cooling system and pioneering solar array upgrades, will be crucial to ensuring that Parker Solar Probe can perform the never-before-possible science investigations at the sun that will answer questions scientists have had about our star and its corona. Learn more about those questions at http://solarprobe.jhuapl.edu/The-Mission/index.php#Science-Objectives.

http://parkersolarprobe.jhuapl.edu/News-Center/Show-Article.php?articleID=30
Go MSL!


instml

From NASA: Delta IV Heavy Booster Cores Arrive for Parker Solar Probe
Posted on 08/03/2017 11:56:00 | Views: 91

Launch preparations are beginning to get off the ground for NASA's upcoming Parker Solar Probe mission, scheduled to lift off in summer 2018 atop a United Launch Alliance Delta IV Heavy rocket.

Two of the three common booster cores comprising the rocket's first stage have arrived on the company's Mariner ship, which delivered the components to Port Canaveral in Florida. From there the cores were offloaded and transported to the Horizontal Processing Facility at Cape Canaveral Air Force Station's Space Launch Complex 37.

The Parker Solar Probe will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

By: NASA/Anna Heiney

http://parkersolarprobe.jhuapl.edu/News-Center/Show-Article.php?articleID=31
Go MSL!


tnt22

#31
Цитировать NASA Kennedy / KSC‏Подлинная учетная запись @NASAKennedy 2 ч. назад

Final #DeltaIV Heavy rocket components arrive at #CCAFS for the Parker Solar Probe mission, launching summer 2018! https://go.nasa.gov/2evYc3a 

https://blogs.nasa.gov/parkersolarprobe/2017/09/01/final-rocket-components-arrive-in-florida-for-parker-solar-probe/
ЦитироватьFinal Rocket Components Arrive in Florida for Parker Solar Probe
Posted on September 1, 2017 at 3:06 pm by Anna Heiney.
          

A United Launch Alliance Delta IV Heavy common booster core arrives at the Horizontal Integration Facility at Cape Canaveral Air Force Station for preflight processing. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. Photo credit: NASA/Cory Huston

All components of the United Launch Alliance Delta IV Heavy rocket that will launch NASA's Parker Solar Probe have arrived for prelaunch processing at Florida's Cape Canaveral Air Force Station.

The rocket's second stage arrived Saturday, Aug. 26, along with the third and final common booster core, which will complete the first stage. The hardware was delivered by ship to Port Canaveral, then transported by truck to the Horizontal Integration Facility at Space Launch Complex 37.
Спойлер
The Parker Solar Probe will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.



Photos at right, above: The Port Common Booster Core of the Delta IV Heavy for the Parker Solar Probe Mission is offloaded from the Mariner ship for transport to the Horizontal Integration Facility at Space Launch Complex 37. Photo credit: NASA/Ben Smegelsky. Below: Sunrise is reflected in the side of the Mariner ship and in the water of Port Canaveral below. Photo credit: NASA/Cory Huston

This entry was posted in Parker Solar Probe on September 1, 2017.
[свернуть]

zandr

http://tass.ru/kosmos/4575930
ЦитироватьNASA в 2018 году запустит зонд для исследования Солнца
НЬЮ-ЙОРК, 20 сентября. /Корр. ТАСС Игорь Борисенко/. Национальное управление по аэронавтике и исследованию космического пространства (NASA) летом будущего года намерено запустить специальный зонд для исследования Солнца. Автоматическая станция Parker Solar Probe по расчетам должна пройти примерно в 6,4 млн км от поверхности звезды, то есть примерно в семь раз ближе, чем аппарат Helios 2, приближавшийся к Солнцу в 1972 году на расстояние в 43,2 млн км. Станция окажется ближе к Солнцу, чем Меркурий - ближайшая планета Солнечной системы.
"Данные, собранные в ходе этого полета, обеспечат поистине революционные изменения в наших представлениях о Солнце, - сообщило в пресс-релизе NASA. - Автоматическая станция пройдет через атмосферу Солнца и приблизится к его поверхности ближе, чем любой другой аппарат, обеспечив человечеству возможность наблюдения за Солнцем с самой близкой дистанции".
Как сообщила во вторник газета The New York Times, от испепеляющего жара солнечной короны - около 1300 градусов Цельсия - станция будет защищена специальным композитным покрытием толщиной 11,43 см. Такая защита обеспечит нормальное функционирование аппаратуры, предназначенной для изучения солнечной короны и солнечного ветра - постоянного потока заряженных частиц, испускаемого Солнцем, а также для изучения магнитных полей, плазмы и заряженных частиц. Наблюдения автоматической станции позволят более точно прогнозировать "космическую погоду" в окрестностях Земли.

tnt22


tnt22

ЦитироватьParker Solar Probe

NASA 360

Опубликовано: 25 сент. 2017 г.

NASA's Parker Solar Probe will be the first-ever mission to "touch" the sun. The spacecraft, about the size of a small car, will travel directly into the sun's atmosphere about 4 million miles from our star's surface. Launch is slated for summer 2018.
https://www.youtube.com/watch?v=W_yDSIuRcdIhttps://www.youtube.com/watch?v=W_yDSIuRcdI (0:49)





tnt22