База на Фобосе

Автор X, 26.09.2004 00:27:56

« назад - далее »

0 Пользователи и 2 гостей просматривают эту тему.

Ber

Цитировать
ЦитироватьТрос из пресловутых нанотрубок диаметром  2 мм  должен держать вес в 6-8  тонн.   Высота марсостационарной орбиты  17220 км  При этом масса троса 36 тонн.  А вес с которым он тянет  вниз 1800 кг, если сечение троса будет уменьшаться по мере приближения к поверхности то вес его можно снизить.    Это не 800 тонн для геостационарной орбиты.  
   Осталось децл, посчитать характеристики ЭРД, для перевода Деймоса на марсостационарную орбиту. :)


A  KAK  HAC4ET  /\YHbI ????[/size]


С Луной все сложнее там  слишком долгие сутки,  поэтому высота луностационарной  орбиты выходит за пределы полости Роша. :)(точнее она всегда одной стороной к Земле)  Лифт нужно строить к  внутренней или внешней точке Лагранжа,  ну влом считать там еще Землю надо учитывать... и все такое.
"Too much of anything is bad, but too much good whiskey is barely enough."  Mark Twain (C)

pkl

ЦитироватьКевларовый тросик будет весить  несколько десятков килограммов и нам его вполне хватит, тока смысла в нем я невижу.    Трос то фигня, а вот коммуникации на 100 км... увольте нереально.    

     Да и чего мелочиться то, берем не Фобос а Деймос, крепим к нему ЭРД помощнее, рабочее тело, сам спутник.  Потихоньку вытаскиваем его  на марсостационарную орбиту и спускаем с него трос, до поверхности.
     Это на Земле лифт построить тяжело (большая она), а на Марсе гораздо проще, раз в десять.  Вот  это использование тросовых систем!  А то 100 км.   :)   Пойду считать лифт для Марса.

Я вообще шланг хотел вытянуть, чтобы КК заправлять.
А двигать спутники и тянуть с них лифты до поверхности планеты нам пока рановато.
А жаль, что у нас нет такого спутника, как Фобос. Думаю, он бы здорово помог в освоении космоса.
Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан

Ber

ЦитироватьЯ вообще шланг хотел вытянуть, чтобы КК заправлять.
А двигать спутники и тянуть с них лифты до поверхности планеты нам пока рановато.
А жаль, что у нас нет такого спутника, как Фобос. Думаю, он бы здорово помог в освоении космоса.


Как вы себе представляете шланг длинной 100км да еще и заполненный топливом?   Если только что то вроде бака перемещаемого по тросу, но, мне кажется гораздо проще расчистить площадку на поверхности и туда причаливать, безопастно и дешево.
"Too much of anything is bad, but too much good whiskey is barely enough."  Mark Twain (C)

ronatu



Схема работы лунного космического лифта. Капсулы, работающие на солнечной энергии, несут грузы, подобно трамваю по рельсам. Один конец каната прикреплен к якорю на лунной поверхности у экватора, в то время как противоположный конец, находящийся на стационарной лунной орбите, снабжен противовесом. Подобно тому, как раскручивают пращу, вращение Луны заставляет противовес тянуть за собой канат, противодействуя лунной гравитации и не позволяя всей этой конструкции упасть на лунную поверхность.


Лунный космический лифт для внутрилунных сообщений.
Основной разработчик - Джером Персон, Star Technology and Research, Inc, штат Южная Каролина.



Source:
http://www.gsfc.nasa.gov/topstory/2004/0930niac_phase1.html
Когда жизнь экзаменует - первыми сдают нервы.

frigate

Решил "возродить" тему - т.к. она стала более актуальной за последний год.  :idea:
1. Borowski S. K., M.W. Mulac, and O.F. Spurlock
Performance Comparisons of Nuclear Thermal Rocket and Chemical Propulsion Systems for Piloted Missions to Phobos/Mars.
In the 40th IAF International Astronautical Congress. Malaga, Spain. Oct. 7-13, 1989. IAF PAPER 89-027. 1989.
2. Nash, Douglas B., Jeffrey Plescia, Mark Cintala, Joel Leving, Paul Lowman, Rocco Mancinelli, Wedell Mendell, Carol Stoker, Steven Suess.
Science Exploration Opportunities for Manned Missions to the Moon, Mars, Phobos, and an Asteroid,
JPL Publication 89 - 29. June 1989.
3. O'Leary, Brian.
Mars 1999 - a Concept for Low Cost Near-Term Human Exploration and Propellant Processing on Phobos and Deimos.
In The Case for Mars III: Strategies for Exploration - General Interest and Overview (report # A90-16651 05-12).
(Univelt Inc.:1989). p. 353-372. AAS PAPER 87-204.
4. O'Leary Brian (Institute For Security And Cooperation In Outer Space Phoenix AZ)
International Manned Missions to Mars and the Resources of Phobos and Deimos
In the 39th IAF International Astronautical Congress Bangalore India Oct. 8-15 1988. 14 p.
5. Singer S. F. (George Mason University Fairfax VA)
The PhD Project in Perspective Use of Phobos and Deimos as Manned Case for Unmanned Exploration of Mars
In The Case for Mars II (A86-28776 12-12). San Diego CA Univelt Inc. 1985 p. 221-223.
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

Дмитрий Виницкий

А что с ней случилось?  :D
+35797748398

frigate

ЦитироватьА что с ней случилось?  :D
С темой или базой :?:
Тема была мёртвой с 2004 года, ну а виртуальная база стала чуть менне виртуальной
в связи с пере-ориентацией НАСА-ской космической политики в сторону Марса.  8)
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

Дмитрий Виницкий

Не наблюдаю никакой переориентации.
+35797748398

frigate

Ладно Дмитрий, раз вы не верите в будущее (Taking aim on Phobos – NASA outline Flexible Path precursor to man on Mars),
давайте займемся прошлым - предлагаю здесь обсудить пилотируемые проекты на Фобос. 8)
1. Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.
Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion
ЦитироватьThe nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR / Earth return vehicle (ERV). It also allows the crew to travel to and from Mars on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixture ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two Magnum launches.
NASA Center:      Glenn Research Center
Publication Date:    December 2002
Document Source:    CASI
Document ID:    20030014643
Publication Information:    Number of Pages = 54
Report Number:    AIAA Paper 98-3883/REV1; E-11445-1/REV1; NAS 1.15:208834/REV1; NASA/TM-1998-208834/REV1
Contract-Grant-Task Number:    NAS3-27186
Meeting Information:    34th Joint Propulsion Conference, FROM, 13-15 Jul. 1998, Cleveland, OH, United States
Keywords:    NUCLEAR PROPULSION; MARS MISSIONS; IN SITU RESOURCE UTILIZATION; HIGH THRUST; SPACECRAFT PROPULSION; LIQUID OXYGEN; CRYOGENIC ROCKET PROPELLANTS; MARS (PLANET); PHOBOS; SPACECRAFT DESIGN; MANNED SPACE FLIGHT;

2. Roberts, Barney B.; Bland, Dan
Office of Exploration: Exploration studies technical report. Volume 2: Studies approach and results
ЦитироватьThe NASA Office of Exploration has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report describes the process that has been developed in a case study approach. The four case studies that were developed in FY88 include: (1) human expedition to Phobos; (2) human expeditions to Mars; (3) lunar observatory; and (4) lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work. Volume 2 describes the case study process, the technical results of each of the case studies, and opportunities for additional study. Included in the discussion of each case study is a description of the mission key features and profile. Mission definition and manifesting are detailed, followed by a description of the mission architecture and infrastructure. Systems concepts for the required orbital nodes, transportation systems, and planetary surface systems are discussed. Prerequisite implementation plans resulting from the synthesized case studies are described and in-depth assessments are presented.
NASA Center:    Johnson Space Center
Publication Date:    Dec 1, 1988
Document Source:    CASI
Document ID:    19890007336
Accession ID:    89N16707
Publication Information:    Number of Pages = 355
Report Number:    NAS 1.15:4075-VOL-2; NASA-TM-4075-VOL-2
Keywords:    LUNAR BASES; LUNAR OBSERVATORIES; MANNED MARS MISSIONS; MISSION PLANNING; NASA SPACE PROGRAMS; PHOBOS; SPACE EXPLORATION; SPACE MISSIONS; INTERPLANETARY FLIGHT; LIFE SUPPORT SYSTEMS; NUCLEAR PROPULSION; SPACE STATIONS; SPACE TRANSPORTATION SYSTEM; SPACECRAFT PROPULSION;
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

Дмитрий Виницкий

Не верю! © Станиславский.
Нечего делать людям именно на Фобосе. Пустая идея. Никакой это не плацдарм для Марса. Если лететь на Марс - Фобос неинтересен. А лететь на Фобос, не летя на Марс - немыслимо.
+35797748398

frigate

3. Exploration studies technical report, FY1988 status. Volume 1: Technical summary
ЦитироватьThe Office of Exploration (OEXP) at NASA Headquarters has been tasked with defining and recommending alternatives for an early 1990's nationaL decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Lyndon B. Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process that has been developed in a case study approach. The four case studies developed in FY88 include: (1) Human Expedition to Phobos; (2) Human Expedition to Mars; (3) Lunar Observatory; and (4) Lunar Outpost to Early Mars Evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.
NASA Center:    NASA (non Center Specific)
Publication Date:    Dec 1, 1988
Document Source:    CASI
Document ID:    19890007335
Accession ID:    89N16706
Publication Information:    Number of Pages = 48
Report Number:    NAS 1.15:4075-VOL-1; NASA-TM-4075-VOL-1
Keywords:    INTERPLANETARY FLIGHT; MANNED SPACE FLIGHT; MISSION PLANNING; SOLAR SYSTEM; LUNAR BASES; MARS (PLANET); MARS SURFACE; OXYGEN PRODUCTION; PHOBOS; ROBOTICS; SPACE EXPLORATION; TELEOPERATORS;
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

SFN

Фобос пустотелый. Он же инопланетная база.

frigate

ЦитироватьSFN пишет:
Фобос пустотелый. Он же инопланетная база.
Ну это была гипотеза Иосифа Шкловского в 60-е. Фобос на самом деле состоит из камней и грязи...  :idea:
JPL в мае этого года представляла свою комцепцию экспедиции на Фобос. 
Роберт Зубрин как и Дмитрий  ;)  считает что пилотируемые экспедиции на  спутники Марса отвлекают от "МАГИСТРАЛЬНОЙ ЛИНИИ"
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

frigate

Project APEX: Advanced Phobos Exploration. Manned mission to the Martian moon Phobos [PDF Size: 51.4 MB]
ЦитироватьThe manned exploration of Mars is a massive undertaking which requires careful consideration. A mission to the moon of Mars called Phobos as a prelude to manned landings on the Martian surface offers some advantages. One is that the energy requirements, in terms of delta 5, is only slightly higher than going to the Moon's surface. Another is that Phobos is a potential source of water and carbon which could be extracted and processed for life support and cryogenic propellants for use in future missions; thus, Phobos might serve as a base for extended Mars exploration or for exploration of the outer planets. The design of a vehicle for such a mission is the subject of our Aerospace System Design course this year. The materials and equipment needed for the processing plant would be delivered to Phobos in a prior unmanned mission. This study focuses on what it would take to send a crew to Phobos, set up the processing plant for extraction and storage of water and hydrocarbons, conduct scientific experiments, and return safely to Earth. The size, configuration, and subsystems of the vehicle are described in some detail. The spacecraft carries a crew of five and is launched from low Earth orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swing by of Venus and takes eight months to complete. The stay at Phobos is 60 days at which time the crew will be engaged in setting up the processing facility. The crew will then return to Earth orbit after a total mission duration of 656 days. Both stellar and solar observations will be conducted on both legs of the mission. The design of the spacecraft addresses human factors and life science; mission analysis and control; propulsion; power generation and distribution; thermal control; structural analysis; and planetary, solar, and stellar science. A 0.5 g artificial gravity is generated during transit by spinning about the lateral body axis. Nuclear thermal rockets using hydrogen as fuel are sel ected to reduce total launch mass and to shorten the duration of the mission. The nuclear systems also provide the primary electrical power via dual mode operation. The overall spacecraft length is 110 meters and the total mass departing from low Earth orbit is 900 metric tons.
Project APEX: Advanced manned exploration of the Martian moon Phobos [PDF Size: 657 KB]
ЦитироватьA preliminary design has been developed for a manned mission to the Martian moon Phobos. The spacecraft is to carry a crew of five and will be launched from Low Earth Orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swing-by of Venus and takes eight months to complete. The stay at Phobos is scheduled for 60 days. During this time, the crew will be busily engaged in setting up a prototype fuel processing facility. The vehicle will then return to Earth orbit after a total mission duration of 656 days. The spacecraft is powered by three nuclear thermal rockets which also provide the primary electrical power via dual mode operation. The overall spacecraft length is 110 m, and the total mass departing fr om Low Earth Orbit is 900 metric tons.
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

frigate

Science exploration opportunities for manned missions to the Moon, Mars, Phobos, and an asteroid [PDF Size: 24.7 MB]
ЦитироватьScientific exploration opportunities for human missions to the Moon, Phobos, Mars, and an asteroid are addressed. These planetary objects are of prime interest to scientists because they are the accessible, terrestrial-like bodies most likely to be the next destinations for human missions beyond Earth orbit. Three categories of science opportunities are defined and discussed: target science, platform science, and cruise science. Target science is the study of the planetary object and its surroundings (including geological, biological, atmospheric, and fields and particle sciences) to determine the object's natural physical characteristics, planetological history, mode of origin, relation to possible extant or extinct like forms, surface environmental properties, resource potential, and suitability for human bases or outposts. Platform science takes advantage of the target body using it as a site for establishing laboratory facilities and observatories; and cruise science consists of studies conducted by the crew during the voyage to and from a target body. Generic and specific science opportunities for each target are summarized along with listings of straw-man payloads, desired or required precursor information, priorities for initial scientific objectives, and candidate landing sites. An appendix details the potential use of the Moon for astronomical observatories and specialized observatories, and a bibliography compiles recent work on topics relating to human scientific exploration of the Moon, Phobos, Mars, and asteroids. It is concluded that there are a wide variety of scientific exploration opportunities that can be pursued during human missions to planetary targets but that more detailed studies and precursor unmanned missions should be carried out first.
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

frigate

Manned Mars Explorer project: Guidelines for a manned mission to the vicinity of Mars using Phobos as a staging outpost; 
schematic vehicle designs considering chemical and nuclear electric propulsion
 [PDF Size: 2.6 MB]
ЦитироватьThe Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

frigate

Manned Mars mission transfer from Mars parking orbit to Phobos or Deimos  [PDF Size: 153 KB]
ЦитироватьThe problem of orbit transfers from a Mars parking orbit with an inclination of 165 degrees to the Mars Moon is addressed. The transfer can be accomplished using a three impulse transfer. The current 1999 baseline manned Mars mission requires a Mars parking orbit with an inclination of 165 degrees. This orbit inclination is necessary due to the direction of the Mars arrival and departure asymptotes of the interplanetary trajectory. The selection of this inclination for the parking orbit minimized the delta velocity requirements at Mars arrival and departure. This presents a problem in making transfer from this orbit to either Phobos or Deimos since it is a retrograde orbit. It is possible to make this transfer efficiently using a three impulse transfer and an intermediate transfer orbit with a very large apogee altitude. How the intermediate transfer orbit apogee can be determined based on a preselected transfer time, the delta velocities required as a function of transfer time, and the propellant required at a function of mission module weight for a transfer time of 5 days is shown. The data presented is specifically for the 1999 opposition class mission but the methods outlined are applicable to any other mission which requires a high inclination parking orbit.
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

frigate

Mission Opportunities for Human Exploration of Nearby Planetary Bodies
ЦитироватьWe characterize mission profiles for human expeditions to near-Earth asteroids, Venus, and Mars. Near-Earth objects (NEOs) are the closest destinations beyond cis-lunar space and present a compelling target with capabilities already under development by NASA and its partners. We present manned NEO mission options that would require between 90 days and one year. We next consider planetary flyby missions for Venus along the lines of plans that were first drafted during the Apollo program for human exploration of Venus. We also characterize a Mars flyby, and a double-flyby variant that would include close passes to both Venus and Mars. Finally, we consider orbital missions to Venus and Mars with capability for rendezvous with Phobos or Deimos. This would be a truly new class of mission for astronauts and could serve as a precursor to a human landing on Mars. We present launch opportunities, transit time, requisite ΔV, and approximate radiation environment parameters for each mission class. We find that ΔV requirements for each class of mission match near-term chemical propulsion system capabilities. 
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков

Антикосмит

Фобос отличная Марсианская Орбитальная Станция. Да, конечно, для начала надо бы его выесть изнутри, если  есть лед.
Ты еще не встретил инопланетян, а они уже обвели тебя вокруг пальца (с) Питер Уоттс

frigate

ЦитироватьАнтикосмит пишет:
Фобос отличная Марсианская Орбитальная Станция. Да, конечно, для начала надо бы его выесть изнутри, если есть лед.
К сожалению не всегда - база на Деймосе м.б. более предпочтительной (все зависит от координат точки "приземления" на Марсе). 
"Селена, луна. Селенгинск, старинный город в Сибири: город лунных ракет." Владимир Набоков