Microsat-R 13 января доставлен на космодром.
http://www.andhrabhoomi.net/content/ap-12355
(https://img.novosti-kosmonavtiki.ru/222713.jpg)
https://www.thehindu.com/news/national/kerala/pslv-lift-off-with-added-features/article25981654.ece
ЦитироватьPSLV lift-off with added features
(https://img.novosti-kosmonavtiki.ru/218982.png) (https://www.thehindu.com/profile/author/Tiki-Rajwi-28895/) Tiki Rajwi (https://www.thehindu.com/profile/author/Tiki-Rajwi-28895/)
Thiruvananthapuram, January 12, 2019 23:09 IST
Upd ated: January 12, 2019 23:09 IST
(https://forum.novosti-kosmonavtiki.ru/forum/file/92870)
The upcoming mission will see a new variant of the PSLV in use
With the Indian Space Research Organisation (ISRO) planning to keep the fourth and final stage of the Polar Satellite Launch Vehicle (PSLV) 'alive' in space as a useful 'orbital platform', the rocket — popularly dubbed ISRO's trusted workhorse — is getting added features.
Se t for lift-off this month with the Microsat-R payload, the upcoming PSLV-C44 mission will see a new variant of the PSLV in use.
This variant, tagged PSLV-DL, will be the first to sport two strap-on boosters for providing added thrust.
Lithium-ion cells
Its final and fourth stage — PS4 — will be equipped with lithium-ion batteries, but no solar panels.
An in-house technology, the lithium-ion cells are critical to keep the spent stage in orbit. Solar panels will be added, in all likelihood, in the next mission, VSSC director S. Somanath says.
The ISRO had hit upon the idea of transforming the expendable fourth stage into a makeshift satellite to reduce space debris.
In normal scenario, the initial stages of the rocket, once they detach, drop back into the sea.
'Recycling'
However, stage four, after releasing the payload, wanders around in space as junk.
If the ISRO plan is successful, the spent stage will be automatically 'recycled' into a valuable platform for space-based experiments.
The VSSC director said that the ISRO would perfect the technology with tests spread over multiple missions.
"We are doing it incrementally. In the PSLV-C44 mission, the platform will be demonstrated. "We have to show that the PS4 stage can be kept 'alive' for more than one orbit. After the regular payloads are injected into their orbits, we will shift the spent stage to another orbit and keep it there and demonstrate that it is live," he said.
On the C44 mission, the ISRO will also test the downloading of data from the stage to the ground station. In subsequent missions, the space agency will carry out experiments using the platform.
A number of experiments are under consideration, though nothing has been finalised. The PSLV, which first flew successfully in 1994, has evolved over the years.
Of the current configurations in use, PSLV-XL employs six strap-on boosters while the 'core alone' has none.
Twin boosters
On the new 'DL' type, the twin boosters will burn at lift-off to give additional thrust to the rocket. The boosters will carry 12 tonnes of propellant.
In all other respects, the 44-metre-tall PSLV will have standard features.
Открыта страница миссии
https://www.isro.gov.in/launcher/pslv-c44
ЦитироватьPSLV-C44
India's Polar Satellite Launch Vehicle (PSLV), in its 46th flight, will launch the Kalamsat and Microsat-R from the First Launch Pad (FLP) of Satish Dhawan Space Centre SHAR, Sriharikota on January 24, 2019.
PSLV is a four stage launch vehicle with alternating solid and liquid stages. The PSLV with 2 strap-on configuration has been identified for this mission and the configuration is designated as PSLV-DL. PSLV-C44 is the first mission of PSLV-DL and is a new variant of PSLV.
In PSLV-C44, the fourth stage (PS4) of the vehicle will be moved to higher circular orbit so as to establish an orbital platform for carrying out experiments. Kalamsat, a student payload will be the first to use PS4 as orbital platform.
PSLV-C44 will also carry Microsat-R, an imaging satellite
Брошюра миссии - https://www.isro.gov.in/pslv-c44/launch-kit
pslv-c44_launch_kit.pdf (https://www.isro.gov.in/sites/default/files/pslv-c44_launch_kit.pdf) - 226.0 KB, 6 стр, 2019-01-16 12:28:35 UTC
(https://forum.novosti-kosmonavtiki.ru/forum/file/92912)
(https://forum.novosti-kosmonavtiki.ru/forum/file/92913) (https://forum.novosti-kosmonavtiki.ru/forum/file/92914) (https://forum.novosti-kosmonavtiki.ru/forum/file/92915) (https://forum.novosti-kosmonavtiki.ru/forum/file/92916) (https://forum.novosti-kosmonavtiki.ru/forum/file/92917)
NOTAM
ЦитироватьVOMF
A0122/19 (Issued for VOMF PART 1 OF 4) - PSLV-C44 ROCKET LAUNCH FM SHAR RANGE,SRIHARIKOTA WILL TAKE
PLACE AS PER FLW DETAILS.THE LAUNCH WILL BE ON ANY ONE
OF THE DAY DRG THIS PERIOD.ACTUAL DATE OF LAUNCH WILL BE
INTIMATED 24 HR IN ADVANCE THROUGH A SEPARATE NOTAM.
LAUNCH PAD COORD: 13 43.9N 080 14.2E
NO FLT IS PERMITTED OVER THE DNG ZONES.
DNG ZONE -1: IS A CIRCLE OF 10NM AROUND THE LAUNCHER.
DNG ZONE -2: IS A SECT BTN 15NM AND 60NM FM LAUNCH PAD COORD AND
BTN AZM ANGLES 130 AND 150 FM TRUE NORTH.
DNG ZONE -3
I. 1145N 08120
II. 1210N 08150
III. 1015N 08315
IV. 0950N 08245
DNG ZONE 4
I. 0900N 08310
II. 0900N 08355
III. 0715N 08355
IV. 0715N 08320
DNG ZONE 5
I. 0100N 08125
II. 0040N 08325
III. 0405S 08230
IV. 0345S 08030
END PART 1 OF 4. 1730-2130, 24 JAN 17:30 2019 UNTIL 22 FEB 21:30 2019. CREATED:
16 JAN 12:22 2019
A0122/19 (Issued for VOMF PART 2 OF 4) - DNG ZONE 6
I. 2415S 07445
II. 2500S 08000
III. 3400S 07800
IV. 3500S 07500
V. 3700S 07145
ROUTES AFFECTED IN CHENNAI FIR
W20, A465, P574, B466, L896, N563, N564, Q11, Q10,Q23, Q24, V3, V4,
V6, V8, V9, P761, T3
CLOSURES/ALTN ROUTING FOR OVERFLYING
1)W20 NOT AVBL BTN MMV-KAMGU
ALTN RTE: MMV -DOHIA - MM610 -RAMDO - KAMGU (BI DIRECTIONAL)
2)Q24 NOT AVBL BTN MMV- KAMGU
ALTN RTE:MMV - DOHIA - MM610 -RAMDO - KAMGU (UNI DIRECTIONAL)
3)Q10 NOT AVBL BTN MMV-SUGAN
ALTN RTE: MMV -DOHIA -MM610- RAMDO-RINTO-SUGAN (UNI DIRECTIONAL)
4)Q11 NOT AVBL BTN GURAS - MMV
ALTN RTE: KASRO -RINTO - GUANI -MMV (UNI DIRECTIONAL)
5)A465 NOT AVBL BTN AKMIL - DOKET
ALTN RTE: AKMIL-PT P (1238N 08107E)-VATMO- DOKET (BI DIRECTIONAL)
6)Q23 NOT AVBL BTN RINTO - MMV
ALTN RTE: RINTO -GUANI -MMV (UNI DIRECTIONAL)
7)P574 NOT AVBL BTN MMV - GIRNA
END PART 2 OF 4. 1730-2130, 24 JAN 17:30 2019 UNTIL 22 FEB 21:30 2019. CREATED:
16 JAN 12:22 2019
Ещё NOTAM (на 3 пусковых дня)
ЦитироватьYMMM
F0083/19 - FLW RECEIVED FROM GOVERNMENT OF INDIA:
PSLV C44 ROCKET LAUNCH FROM INDIA IS NOW SCHEDULED.
2 DANGER ZONES EFFECT YMMM:
ZONE 5 BOUNDED BY
0100N 08125E
0040N 08325E
0405S 08230E
0345S 08030E
TO BEGINNING
ZONE 6 BOUNDED BY
2415S 07445E
2500S 08000E
3400S 07800E
3500S 07500E
3700S 07145E
TO BEGINNING. SFC - UNL, DAILY 1730/2130, 24 JAN 17:30 2019 UNTIL 26 JAN 21:30 2019. CREATED: 11 JAN 23:40 2019
Цитировать(https://img.novosti-kosmonavtiki.ru/69464.jpg)ISROПодлинная учетная запись @isro (https://twitter.com/isro) 11 ч. назад (https://twitter.com/isro/status/1085521725888974849)
(https://img.novosti-kosmonavtiki.ru/125273.png) #ISROMissions (https://twitter.com/hashtag/ISROMissions?src=hash) (https://img.novosti-kosmonavtiki.ru/125273.png)
#PSLVC44 (https://twitter.com/hashtag/PSLVC44?src=hash) to launch #Kalamsat (https://twitter.com/hashtag/Kalamsat?src=hash) and #MicrosatR (https://twitter.com/hashtag/MicrosatR?src=hash) from Satish Dhawan Space Centre, Sriharikota on January 24. Kalamsat is a student payload while Microsat-R is an imaging satellite.
Stay tuned for updates.
(https://img.novosti-kosmonavtiki.ru/174131.jpg)
https://www.isro.gov.in/pslv-c44/pslv-c44-gallery
ЦитироватьPSLV-C44 Gallery
(https://www.isro.gov.in/sites/default/files/styles/gallery_thumb/public/galleries/%20PSLV-C44%20Gallery/01pslv-c44integrateduptofourthstageatmst.jpg?itok=qnKI76AZ) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/01pslv-c44integrateduptofourthstageatmst.jpg) (https://www.isro.gov.in/sites/default/files/styles/gallery_thumb/public/galleries/%20PSLV-C44%20Gallery/02pslv-c44thirdandfourthstagesatstagepreparationfacility.jpg?itok=6gC4FbKD) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/02pslv-c44thirdandfourthstagesatstagepreparationfacility.jpg) (https://img.novosti-kosmonavtiki.ru/206497.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/03hoistingofpslv-c44secondstageduringvehicleintegration.jpg) (https://img.novosti-kosmonavtiki.ru/206499.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/04hoistingofaninterstageduringpslv-c44integration.jpg) (https://www.isro.gov.in/sites/default/files/styles/gallery_thumb/public/galleries/%20PSLV-C44%20Gallery/05pslv-c44integrateduptofirststageinsidemobileservicetower.jpg?itok=-HcCTRgA) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/05pslv-c44integrateduptofirststageinsidemobileservicetower.jpg) (https://img.novosti-kosmonavtiki.ru/206501.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/06hoistingofoneofthestrap-onsofpslv-c44duringvehicleintegration.jpg) (https://img.novosti-kosmonavtiki.ru/206502.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/07aviewoftwojoinedsegmentofpslv-c44corestageatmobileservicetower.jpg) (https://img.novosti-kosmonavtiki.ru/206504.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/08hoistingofthenozzleendsegmentofpslv-c44overthelaunchpedestal.jpg)
Брошюра миссии обновлена и дополнена (пополнена фотогалерея, частично изменён дизайн страниц)
pslv-c44_launch_kit_0.pdf (https://www.isro.gov.in/sites/default/files/pslv-c44_launch_kit_0.pdf) - 4.4 MB, 6 стр, 2019-01-17 06:12:49 UTC
NOTMAR
ЦитироватьHYDROPAC 176/2019 (61,63)
BAY OF BENGAL.
INDIAN OCEAN.
INDIA.
DNC 03.
1. HAZARDOUS OPERATIONS, ROCKET LAUNCHING
1730Z TO 2130Z DAILY 24 THRU 26 JAN IN AREAS:
A. WITHIN TEN MILES OF 13-43.9N 080-14.2E.
B. WITHIN 60 MILES OF
13-43.9N 080-14.2E
BETWEEN 130 DEGREES AND 150 DEGREES.
C. BOUND BY
11-45N 081-20E, 12-10N 081-50E,
10-15N 083-15E, 09-50N 082-45E.
D. BOUND BY
09-00N 083-10E, 09-00N 083-55E,
07-15N 083-55E, 07-15N 083-20E.
E. BOUND BY
01-00N 081-25E, 00-40N 083-25E,
04-05S 082-30E, 03-45S 080-30E.
F. BOUND BY
24-15S 074-45E, 25-00S 080-00E,
34-00S 078-00E, 35-00S 075-00E,
37-00S 071-45E.
2. CANCEL THIS MSG 262230Z JAN 19.
( 171129Z JAN 2019 )
https://www.isro.gov.in/pslv-c44/pslv-c44-curtain-raiser-video-english
ЦитироватьPSLV-C44 Curtain Raiser Video (English)
https://www.isro.gov.in/sites/default/files/videos/pslv-c44-english.mp4.mp4 (https://www.isro.gov.in/sites/default/files/videos/pslv-c44-english.mp4.mp4)
Description: PSLV-C44 Curtain Raiser Video (https://www.isro.gov.in/sites/default/files/pslv_c44_launch_brochure.pdf) (English)
Format : MP4
File Size : 22.3 MB
Duration : 00:04:14
Ещё одна брошюра миссии - https://www.isro.gov.in/pslv-c44/pslv-c44-launch-brochure
pslv_c44_launch_brochure.pdf (https://www.isro.gov.in/sites/default/files/pslv_c44_launch_brochure.pdf) - 3.7 MB, 6 стр, 2019-01-22 11:07:53 UTC
(https://forum.novosti-kosmonavtiki.ru/forum/file/93029)(https://forum.novosti-kosmonavtiki.ru/forum/file/93030)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93031) (https://forum.novosti-kosmonavtiki.ru/forum/file/93032) (https://forum.novosti-kosmonavtiki.ru/forum/file/93033) (https://forum.novosti-kosmonavtiki.ru/forum/file/93034)
Карта закрываемых зон (к #6 (http://novosti-kosmonavtiki.ru/forum/messages/forum12/topic16695/message1829961/#message1829961))
(https://forum.novosti-kosmonavtiki.ru/forum/file/93035)
Обновление фотогалереи (https://www.isro.gov.in/pslv-c44/pslv-c44-gallery):
Добавлены 6 снимков
Цитировать(https://img.novosti-kosmonavtiki.ru/206513.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/pslv-c44.jpg) (https://img.novosti-kosmonavtiki.ru/206509.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/pslv-c442.jpg) (https://img.novosti-kosmonavtiki.ru/206510.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/pslv-c443.jpg) (https://img.novosti-kosmonavtiki.ru/206511.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/pslv-c444.jpg) (https://img.novosti-kosmonavtiki.ru/206512.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/pslv-c445.jpg) (https://www.isro.gov.in/sites/default/files/styles/gallery_thumb/public/galleries/%20PSLV-C44%20Gallery/09closingofpayloadfairing.jpg?itok=qg0CJGQ1) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/09closingofpayloadfairing.jpg)
Цитировать(https://img.novosti-kosmonavtiki.ru/69464.jpg)ISROПодлинная учетная запись @isro (https://twitter.com/isro) 3:00 (https://twitter.com/isro/status/1088028614312882177) - 23 янв. 2019 г.
(https://img.novosti-kosmonavtiki.ru/125273.png) #ISROMissions (https://twitter.com/hashtag/ISROMissions?src=hash) (https://img.novosti-kosmonavtiki.ru/125273.png)
#PSLVC44 (https://twitter.com/hashtag/PSLVC44?src=hash) sits pretty on the launchpad at the Satish Dhawan Space Centre in Sriharikota under the watchful eyes of the #Moon (https://twitter.com/hashtag/Moon?src=hash), ahead of its midnight launch tomorrow (Jan 24), carrying #Kalamsat (https://twitter.com/hashtag/Kalamsat?src=hash) and #MicrosatR (https://twitter.com/hashtag/MicrosatR?src=hash).
Updates will continue.
(https://img.novosti-kosmonavtiki.ru/174266.jpg)
Видео из #12 (http://novosti-kosmonavtiki.ru/forum/messages/forum12/topic16695/message1831087/#message1831087) на ТыТрубе
ЦитироватьPSLV-C44 / MicroSat-R Mission Curtain Raiser Video
defence and space updates (https://www.youtube.com/channel/UCUYclDjSb1mwklJgjYhbbzg)
Опубликовано: 22 янв. 2019 г.
https://www.youtube.com/watch?v=MJJjFQvEoQwhttps://www.youtube.com/watch?v=MJJjFQvEoQw (https://www.youtube.com/watch?v=MJJjFQvEoQw) (4:14)
Цитировать(https://img.novosti-kosmonavtiki.ru/69464.jpg)ISROПодлинная учетная запись @isro (https://twitter.com/isro) 7:45 (https://twitter.com/isro/status/1088100436178018304) - 23 янв. 2019 г.
(https://img.novosti-kosmonavtiki.ru/125273.png) #ISROMissions (https://twitter.com/hashtag/ISROMissions?src=hash) (https://img.novosti-kosmonavtiki.ru/125273.png)
Countdown for the launch of #PSLVC44 (https://twitter.com/hashtag/PSLVC44?src=hash) started today at 19:37 (IST) at Satish Dhawan Space Centre, Sriharikota. The launch is scheduled tomorrow at 23:37 (IST).
Updates will continue.
#Kalamsat (https://twitter.com/hashtag/Kalamsat?src=hash)
#MicrosatR (https://twitter.com/hashtag/MicrosatR?src=hash)
18:07 UTC 24.01.2019
https://www.isro.gov.in/update/24-jan-2019/pslv-c44-mission-propellants-filling-of-fourth-stage-ps4-of-pslv-c44-completed
ЦитироватьJan 24, 2019
PSLV-C44 Mission - Propellants filling of fourth stage (PS4) of PSLV-C44 completed
https://www.isro.gov.in/update/24-jan-2019/pslv-c44-mission-filling-of-oxidizer-n204-second-stage-ps2-completed
ЦитироватьJan 24, 2019
PSLV-C44 Mission - Filling of oxidizer (N204) for the second stage (PS2) completed
https://www.isro.gov.in/update/24-jan-2019/pslv-c44-mission-filling-of-propellant-uh25-second-stage-ps2-of-pslv-c44
ЦитироватьJan 24, 2019
PSLV-C44 Mission - Filling of propellant UH25 for second stage (PS2) of PSLV-C44 commenced.
https://www.isro.gov.in/update/24-jan-2019/pslv-c44-mission-filling-of-propellant-uh25-second-stage-ps2-of-pslv-c44-0
ЦитироватьJan 24, 2019
PSLV-C44 Mission - Filling of propellant UH25 for the second stage (PS2) of PSLV-C44 completed
Фотогалерея (https://www.isro.gov.in/pslv-c44/pslv-c44-gallery) пополнена
Цитировать(https://img.novosti-kosmonavtiki.ru/206495.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/01.jpg) (https://img.novosti-kosmonavtiki.ru/206496.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/02.jpg) (https://img.novosti-kosmonavtiki.ru/206498.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/03.jpg) (https://img.novosti-kosmonavtiki.ru/206500.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/04.jpg) (https://www.isro.gov.in/sites/default/files/styles/gallery_thumb/public/galleries/%20PSLV-C44%20Gallery/05.jpg?itok=IOuRIXjr) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/05.jpg) (https://www.isro.gov.in/sites/default/files/styles/gallery_thumb/public/galleries/%20PSLV-C44%20Gallery/06.jpg?itok=WSED9dCm) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/06.jpg) (https://img.novosti-kosmonavtiki.ru/206503.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/07.jpg) (https://img.novosti-kosmonavtiki.ru/206516.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/untitledpanorama2.jpg)
https://www.isro.gov.in/pslv-c44/watch-live-launch-of-pslv-c44-today-2310-hrs-ist-onwards
ЦитироватьWatch Live launch of PSLV-C44 today from 23:10 hrs (IST) onwards
(https://www.isro.gov.in/sites/default/files/article-files/node/11937/live-pslv-c44.png)
17:40 UTC
Официальная трансляция ISRO:
http://cdn.24fd.com/e19/01/isro/24/index.html
Альтернативная трансляция на ТыТрубе
ЦитироватьLIVE: Launch of Indian PSLV-DL rocket (PSLV-C44) carrying Microsat-R satellite!
Raw Space (https://www.youtube.com/channel/UC2_vpnza621Sa0cf_xhqJ8Q)
Трансляция началась 12 минут назад
youtube.com/watch?v=8WQoDy9QPDo (https://www.youtube.com/watch?v=8WQoDy9QPDo)
Официальная трансляция Doordarshan National на ТыТрубе
Цитироватьyoutube.com/watch?v=ipd9c78kQNw (https://www.youtube.com/watch?v=ipd9c78kQNw)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93081)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93082)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93084)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93085)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93083)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93086)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93087)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93088)
Зажигание!!!
(https://forum.novosti-kosmonavtiki.ru/forum/file/93089)
Пуск!!!
(https://forum.novosti-kosmonavtiki.ru/forum/file/93090)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93091) (https://forum.novosti-kosmonavtiki.ru/forum/file/93092)
Отд боковых ускорителей
(https://forum.novosti-kosmonavtiki.ru/forum/file/93093)
Выкл ДУ 1-й ст РН
(https://forum.novosti-kosmonavtiki.ru/forum/file/93094)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93095)
Сброс ГО
(https://forum.novosti-kosmonavtiki.ru/forum/file/93096)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93097) (https://forum.novosti-kosmonavtiki.ru/forum/file/93098)
Отд 2-й ст РН
(https://forum.novosti-kosmonavtiki.ru/forum/file/93099)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93100) (https://forum.novosti-kosmonavtiki.ru/forum/file/93101)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93102)
Вкл ДУ 4-й ст РН (PS4)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93103)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93104) (https://forum.novosti-kosmonavtiki.ru/forum/file/93105)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93106)
Есть отделение Microsat-R
(https://forum.novosti-kosmonavtiki.ru/forum/file/93107)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93108)
Команда Kalamsat
(https://forum.novosti-kosmonavtiki.ru/forum/file/93109)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93110)
Цитировать(https://img.novosti-kosmonavtiki.ru/69464.jpg)ISROПодлинная учетная запись @isro (https://twitter.com/isro) 12 мин. назад (https://twitter.com/isro/status/1088503057325801473)
(https://img.novosti-kosmonavtiki.ru/125273.png) #ISROMissions (https://twitter.com/hashtag/ISROMissions?src=hash) (https://img.novosti-kosmonavtiki.ru/125273.png)
#PSLVC44 (https://twitter.com/hashtag/PSLVC44?src=hash) successfully places #MicrosatR (https://twitter.com/hashtag/MicrosatR?src=hash) into its intended orbit.
#Kalamsat (https://twitter.com/hashtag/Kalamsat?src=hash)
(https://img.novosti-kosmonavtiki.ru/174325.jpg)
Заключительное слово
(https://forum.novosti-kosmonavtiki.ru/forum/file/93111)
(https://forum.novosti-kosmonavtiki.ru/forum/file/93113)(https://forum.novosti-kosmonavtiki.ru/forum/file/93114)
Цитировать(https://img.novosti-kosmonavtiki.ru/186040.jpg)Chris B - NSF @NASASpaceflight (https://twitter.com/NASASpaceflight) 10:21 (https://twitter.com/NASASpaceflight/status/1088502093281939458) - 24 янв. 2019 г.
Microsat-R (military sat) S/C Sep! That was the heaviest of the two payloads. Now an extended coast phase for the next 41 minutes and two seconds. Following the coast, a sixteen-second engine burn will raise the apogee of the fourth stage's orbit. KalamSat won't be separated.
(https://img.novosti-kosmonavtiki.ru/174323.jpg)
(https://img.novosti-kosmonavtiki.ru/174324.jpg)
ЦитироватьPSLV-C44 launches Microsat-R and Kalamsat
SciNews (https://www.youtube.com/channel/UCjU6ZwoTQtKWfz1urL7XcbA)
Опубликовано: 24 янв. 2019 г.
https://www.youtube.com/watch?v=-b5i_ldqngYhttps://www.youtube.com/watch?v=-b5i_ldqngY (https://www.youtube.com/watch?v=-b5i_ldqngY) (
4:18)
Цитировать(https://img.novosti-kosmonavtiki.ru/186040.jpg)Chris B - NSF @NASASpaceflight (https://twitter.com/NASASpaceflight) 10:23 (https://twitter.com/NASASpaceflight/status/1088502631633481728) - 24 янв. 2019 г.
ARTICLE:
https://www.nasaspaceflight.com/2019/01/pslv-launch-debut-orbital-platform-fourth-stage/ ... (https://t.co/1VZSqkeGam)
- by William Graham
Официальная запись трансляции пуска
ЦитироватьLaunch of PSLV-C44 Mission- Live from Satish Dhawan Space Centre (SHAR), Sriharikota
DoordarshanNational (https://www.youtube.com/channel/UCSjPe5kinQtwcyHcFJyyMfw)
Трансляция началась 75 минут назад
https://www.youtube.com/watch?v=ipd9c78kQNwhttps://www.youtube.com/watch?v=ipd9c78kQNw (https://www.youtube.com/watch?v=ipd9c78kQNw) (1:05:59)
https://spaceflightnow.com/2019/01/24/pslv-c44-launch/
ЦитироватьIndia debuts new version of workhorse PSLV
January 24, 2019 (https://spaceflightnow.com/2019/01/) | Stephen Clark (https://spaceflightnow.com/author/stephen-clark/)
EDITOR'S NOTE: Updated after launch.
A new variant of India's workhorse Polar Satellite Launch Vehicle with two strap-on solid rocket boosters and an upper stage converted into an experiment-carrying platform debuted Thursday with a launch into polar orbit.
The 145-foot-tall (44-meter) PSLV lifted off from the Satish Dhawan Space Center, located on Sriharikota Island on India's east coast, at 1807 GMT (1:07 p.m. EST) Thursday on the first Indian space launch of 2019.
The launch occurred at 11:37 p.m. Indian Standard Time, making it a rare night launch from India's spaceport.
The primary payload on the flight was an Indian military Earth observation satellite named Microsat-R. But a major objective of the launch was to demonstrate using the PSLV's fourth stage as an experiment base in orbit after deploying the Microsat-R spacecraft.
(https://img.novosti-kosmonavtiki.ru/145319.jpg)
India's Polar Satellite Launch Vehicle stands on its launch pad ahead of Thursday's flight. Credit: ISRO
On previous PSLV missions, the liquid-fueled fourth stage was deactivated after finishing its satellite deployment sequence. Most other rockets do the same, either leaving their spent rocket stages in orbit or deorbiting them to burn up in Earth's atmosphere.
The Indian Space Research Organization, India's national space agency, said the fourth stage on Thursday's launch carried a payload developed by Indian students named Kalamsat. The tiny payload weighs only a couple of pounds and was planned to only be active around 15 hours after the launch before its batteries are drained, but future PSLV upper stages could include solar panels to generate electricity for longer experiment durations.
Developed by a Chennai-based organization named Space Kidz India, the Kalamsat payload uses commercial off-the-shelf computer and communications systems and will broadcast data to Earth from the PSLV upper stage. A precursor experiment from Space Kidz India launched on a NASA-sponsored suborbital sounding rocket flight to space from Wallops Island, Virginia, in 2017.
Thursday's mission was also the first to use a new configuration of India's Polar Satellite Launch Vehicle with two strap-on boosters. Previous PSLV flights used no boosters or flew with six motors to provide extra thrust at liftoff.
(https://img.novosti-kosmonavtiki.ru/145320.jpg)
This labeled illustration shows the PSLV-DL configuration with two solid rocket boosters. Credit: ISRO
The new rocket configuration, named the PSLV-DL, will give Indian officials an intermediate option to fly the rocket with fewer boosters if a mission does not need the full lifting performance of six strap-on motors, a measure that adds flexibility for ISRO managers and could save money.
The PSLV's solid rocket boosters burn around 12.2 metric tons — more than 26,000 pounds — of pre-packed solid propellant in the first 70 seconds of the flight, then jettison from the rocket's core stage to fall into the Bay of Bengal.
Each booster stands 39 feet (12 meters) tall and measures around 3.3 feet (1 meter) in diameter, generating approximately 158,000 pounds of thrust. With two boosters supplementing the PSLV's solid-fueled core stage, the PSLV-DL fired off the launch pad with around a million pounds of thrust.
Heading on an initial track southeast from Sriharikota, the twin boosters separated around 70 seconds after liftoff, and the PSLV's first stage burned out and jettison at T+plus 1 minute, 49 seconds, followed immediately by ignition of the rocket's liquid-fueled second stage. The second stage's Vikas engine, consuming hydrazine and nitrogen tetroxide, produced around 180,000 pounds of thrust for a two-and-a-half minute burn, during which the PSLV's payload shroud released in a clamshell-like fashion once the launcher reaches space.
After bending its trajectory toward the south to bypass an overflight of Sri Lanka, the PSLV fired its solid-fueled third stage next, followed by ignition of the twin-engine fourth stage — also burning hydrazine — at T+plus 8 minutes, 18 seconds.
The fourth stage, known as the PS4, shut down at T+plus 12 minutes, 46 seconds, and deployed the Microsat-R spacecraft at T+plus 13 minutes, 33 seconds. ISRO officials confirmed the successful deployment of Microsat-R.
The Hindu, an English-language newspaper in India, reported the Microsat-R satellite comes from the Defense Development and Research Organization — DDRO — the research and development agency of the Indian military. The roughly 1,631-pound (740-kilogram) satellite was to be deployed in an unusually-low orbit around 170 miles (274 kilometers) above Earth, the Hindu reported.
ISRO provided no details about Microsat-R in a press kit released before the launch, other than to describe it as an "imaging satellite."
Microsat-R separated in an orbit inclined around 96.6 degrees to the equator, according to the ISRO press kit.
Two additional burns by the PS4 fourth stage engines, each programmed to last around 15 seconds, were planned approximately 54 minutes and 1 hour, 40 minutes, after liftoff to raise the rocket's orbit to an altitude of 279 miles (450 kilometers) at an inclination of 98.8 degrees. In that orbit, the fourth stage was to begin its mission as an experiment platform with the Kalamsat payload.
Thursday's launch marked the 46th flight of a Polar Satellite Launch Vehicle since 1993. All but two of the launches have been successful.
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 50 мин. назад (https://twitter.com/planet4589/status/1088502122902183936)
Microsat-R delivered to 274 x 275 km orbit. PS4 now moves on to its test mission.
Цитировать(https://img.novosti-kosmonavtiki.ru/69464.jpg)ISROПодлинная учетная запись @isro (https://twitter.com/isro) 20 мин. назад (https://twitter.com/isro/status/1088533607503650816)
(https://img.novosti-kosmonavtiki.ru/125273.png) #ISROMissions (https://twitter.com/hashtag/ISROMissions?src=hash) (https://img.novosti-kosmonavtiki.ru/125273.png)
#KalamsatV2 (https://twitter.com/hashtag/KalamsatV2?src=hash) too successfully placed into its intended orbit.
#PSLVC44 (https://twitter.com/hashtag/PSLVC44?src=hash)
#MicrosatR (https://twitter.com/hashtag/MicrosatR?src=hash)
Цитировать(https://img.novosti-kosmonavtiki.ru/69464.jpg)ISROПодлинная учетная запись @isro (https://twitter.com/isro) 14 мин. назад (https://twitter.com/isro/status/1088542327042236416)
#ISROMissions (https://twitter.com/hashtag/ISROMissions?src=hash)
(https://img.novosti-kosmonavtiki.ru/125273.png) Mission Accomplished! (https://img.novosti-kosmonavtiki.ru/125273.png)
Thank You for your support!
#PSLVC44 (https://twitter.com/hashtag/PSLVC44?src=hash)
#MicrosatR (https://twitter.com/hashtag/MicrosatR?src=hash)
#KalamsatV2 (https://twitter.com/hashtag/KalamsatV2?src=hash)
(https://img.novosti-kosmonavtiki.ru/174341.jpg)
https://www.isro.gov.in/launcher/pslv-c44
ЦитироватьJan 24, 2019
PSLV-C44
India's Polar Satellite Launch Vehicle (PSLV-C44) successfully injected Microsat-R and Kalamsat-V2 satellites into their designated orbits.
The PSLV-C44 lifted off at 23:37 Hrs (IST) on January 24, 2019 from the First Launch Pad at Satish Dhawan Space Centre SHAR, Sriharikota in its 46th flight.
About 13 minutes 26 seconds after lift-off, Microsat-R, an imaging satellite was successfully injected into intended orbit of 274 km.
Subsequently, the fourth stage (PS4) of the vehicle was moved to a higher circular orbit of 453 km after two restarts of the stage, to establish an orbital platform for carrying out experiments. Kalamsat-V2, a student payload, first to use PS4 as an orbital platform.
https://www.isro.gov.in/update/25-jan-2019/pslv-c44-successfully-launched-microsat-r-and-kalamsat-v2
ЦитироватьJan 25, 2019
PSLV-C44 successfully launched Microsat-R and Kalamsat-V2
India's Polar Satellite Launch Vehicle (PSLV-C44) successfully injected Microsat-R and Kalamsat-V2 satellites into their designated orbits.
The PSLV-C44 lifted off at 23:37 Hrs (IST) on January 24, 2019 from the First Launch Pad at Satish Dhawan Space Centre SHAR,Sriharikota in its 46th flight.
About 13 minutes 26 secondsafter lift-off, Microsat-R was successfully injected into intended orbit of 274 km.After injection, two solar arrays of the satellite were deployed automatically and ISRO Telemetry Tracking & Command Network (ISTRAC) at Bengaluru assumed control of the satellite.
Subsequently, the fourth stage (PS4) of the vehicle was moved to a higher circular orbit of 453 km after two restarts of the stage, to establish an orbital platform for carrying out experiments. Kalamsat-V2, a student payload, first to use PS4 as an orbital platform, was taken to its designated orbit about 1 hour and 40 minutes after lift-off.
This flight marked the first mission of PSLV-DL, a new variant of PSLV with two strap-on motors.
In the previous PSLV launch on November 29, PSLV-C43 had successfully launched India's HysIS as well as 30 customer satellites from abroad.
In his post-launch address, Chairman Dr K Sivan said the PSLV-C44 mission was unique as it was for the first time ISRO used the last stage of the rocket as a platform to perform experiments in space.
"I hope the student community will make use of this opportunity being provided by ISRO. This new low cost technology will help students to conduct several inspiring experiments in space by attaching their instruments to the last stage of the rocket," Dr Sivan said.
He congratulated Kalamsat-V2 team for their perfection in making satellites. "We must strive for science-oriented India. ISRO is open to all students across India. We want students to bring their satellites to us and we will launch them.Young scientists will shape the future of India," Dr Sivan said. He also introduced the Kalamsat-V2 team.
Mission Director R Hutton thanked the entire PSLV-C44 team for their relentless efforts in making the launch successful.
Спойлер
Earlier on January 24, 2019, Dr Sivan held the third edition of Samwad with Students (SwS) in Sriharikota. Over 300 students from schools in and around the region had an opportunity to interact with him.
SwS is the newly-launched outreach initiative of ISRO to instill scientific temper among youngsters. The first edition was held in Bengaluru on January 1, 2019 and the second one at Kochi on January 20, 2019.
"Concentrate on the present with full sincerity. Dilemmas will disappear. A good student is not afraid of failure. Failures are important for learning as they open up new avenues," Dr Sivan told the SwS participants.
(https://img.novosti-kosmonavtiki.ru/206475.jpg)
В фотогалерею (https://www.isro.gov.in/pslv-c44/pslv-c44-gallery) добавлены ещё 4 снимка
Цитировать(https://img.novosti-kosmonavtiki.ru/206506.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/bjs6664.jpg) (https://img.novosti-kosmonavtiki.ru/206505.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/bjs6654.jpg) (https://img.novosti-kosmonavtiki.ru/206507.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/logu5306.jpg) (https://img.novosti-kosmonavtiki.ru/206508.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/n12a0185.jpg)
Обнаружен один объект запуска0 TBA - TO BE ASSIGNED
1 43947U 19006A 19024.86819569 -.00000570 18008-5 00000+0 0 9995
2 43947 96.4463 298.2303 0010654 233.7079 205.9778 16.01039821 15
43947 / 2019-006A : 264 x 279 km x 96.446°
https://www.isro.gov.in/pslv-c44/pslv-c44-lift-and-onboard-camera-view
ЦитироватьPSLV-C44 Lift off and Onboard Camera view
https://www.isro.gov.in/sites/default/files/videos/pslv-c44.mp4 (https://www.isro.gov.in/sites/default/files/videos/pslv-c44.mp4)
Description: PSLV-C44 (https://www.isro.gov.in/sites/default/files/videos/pslv-c44.mp4) Lift off and Onboard Camera view
Format : MP4
File Size : 22.98 MB
Duration : 00:01:01
И на ТыТрубе
ЦитироватьPSLV C44 Onboard Camera Footage
Space Archive (https://www.youtube.com/channel/UCneC9wpZhIbvrvrzR_jPUjw)
Опубликовано: 24 янв. 2019 г.
https://www.youtube.com/watch?v=bWbg1K-u1D4https://www.youtube.com/watch?v=bWbg1K-u1D4 (https://www.youtube.com/watch?v=bWbg1K-u1D4) (1:01)
https://tass.ru/kosmos/6038961
Цитировать24 ЯНВ, 23:01
СМИ: Индия отправила на орбиту самый легкий в мире спутник
Kalamsat-V2 весит всего 1,26 кг, отмечает телеканал NDTV
НЬЮ-ДЕЛИ, 24 января. /ТАСС/. Индийская организация космических исследований (ISRO) отправила в четверг на орбиту самый легкий в мире спутник Kalamsat-V2, который собрали индийские студенты. Как сообщает телеканал NDTV, спутник весом всего 1,26 кг поднялся в космос на борту ракеты-носителя PSLV-C44.
Вместе с Kalamsat-V2, который представляет собой куб со стороной 10 см, ракета-носитель вывела на орбиту 740-килограммовый индийский военный спутник наблюдения за Землей Microsat-R. Это первый космический запуск ISRO в текущем году.
Как ранее сообщила организация, четвертая ступень носителя PSLV-C44 - нового варианта индийской ракеты PSLV - выведена на орбиту в качестве платформы для проведения экспериментов в космосе.
Первый спутник Kalamsat был создан в 2017 году группой старшеклассников и студентов из штата Тамилнад, он весил всего 64 г. В июне 2017 года спутник отправился в суборбитальный полет на ракете Terrier Orion, принадлежащей NASA. Тогда же "Книга рекордов Азии" и "Книга рекордов Индии" признали этот аппарат самым легким и маленьким спутником в мире. При его производстве использовалась 3D-печать.
Новый аппарат также создан в Тамилнаде. Хотя его масса больше, чем у первого, его считают самым легким спутником на орбите, поскольку первый Kalamsat на орбиту выведен не был.
Оба аппарата получили название в честь доктора Абдула Калама - руководителя работ над первыми индийскими ракетами- носителями, которого нередко называют "индийским Королевым". С 2002 по 2007 годы Калам занимал пост президента Индии.
Второй объект запуска0 TBA - TO BE ASSIGNED
1 43948U 19006B 19024.94537096 -.00000110 00000-0 00000+0 0 9995
2 43948 98.7373 299.2270 0002601 8.6108 125.3577 15.38731570 11
43948 / 2019-006B : 448 x 452 km x 98.737°
Объекты запуска идентифицированы
(https://forum.novosti-kosmonavtiki.ru/forum/file/93137)
https://ria.ru/20190125/1549896310.html
ЦитироватьИндия вывела на орбиту самый легкий спутник в мире Kalamsat-V2
10:21
НЬЮ-ДЕЛИ, 25 янв - РИА Новости. Первый из отправленных в 2019 году на орбиту космических спутников Индии Kalamsat-V2 был собран студентами менее чем за неделю и весит меньше деревянной табуретки, всего 1,26 килограмма, сообщил в пятницу телеканал NDTV (https://www.ndtv.com/video/news/news/isro-successfully-launches-world-s-lightest-satellite-made-by-students-504984).
Kalamsat-V2, который представляет собой куб с гранями по 10 сантиметров, является на сегодняшний день самым легким спутником в мире. Расходы на его создание составили порядка 120 тысяч рупий (примерно 1,7 тысячи долларов). Вместе с ним ракета-носитель PSLV-44 доставила в космос 740-киллограммовый индийский военный спутник Microsat-R, предназначенный для фотосъемки с высокой точностью объектов на Земле.
Первая версия спутника Kalamsat была создана совместными усилиями студентов и школьников из штата Тамилнад в 2017 году. Он весил всего 64 грамма, однако в отличие от Kalamsat-V2 так и не достиг орбиты Земли. Из-за своих скромных размеров спутник получил шутливое название "гулаб джамун" по аналогии с традиционной индийской сладостью, представляющей собой обжаренный молочный шарик в сиропе. Оба спутника были названы в честь доктора Абдула Калама, который руководил работами по созданию первых индийских ракет-носителей.
Премьер-министр Индии Нарендра Моди высоко оценил достижение индийских студентов и поздравил всех участников с успешным запуском. "Мои самые теплые поздравления нашим ученым в связи с еще одним успешным пуском ракеты PSLV. Благодаря этому запуску мы вывели на орбиту спутник Kalamsat, созданный нашими талантливыми учащимися", - написал премьер в Twitter (https://twitter.com/narendramodi).
Внешний вид "Микросата" не раскрывали?
Фотогалерея (https://www.isro.gov.in/pslv-c44/pslv-c44-gallery) пополнена двумя снимками
Цитировать(https://img.novosti-kosmonavtiki.ru/206515.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/pslvc44liftoff2.jpg) (https://img.novosti-kosmonavtiki.ru/206514.jpg) (https://www.isro.gov.in/sites/default/files/galleries/%20PSLV-C44%20Gallery/pslvc44liftoff1.jpg)
ЦитироватьВиктор Воропаев пишет:
Внешний вид "Микросата" не раскрывали?
Спутник - военный, ISRO описание не приводит. Через сутки после пуска на оф.сайте появилась (и не более того):
https://www.isro.gov.in/Spacecraft/microsat-r
ЦитироватьJan 24, 2019
Microsat-R
Microsat-R, an imaging satellite was successfully injected into intended orbit of 274 km by PSLV-C44 on January 24, 2019
प्रमोचक राकेट / Launch Vehicle: | PSLV-C44 |
निर्माता / Manufacturer: | ISRO |
स्वामी / Owner: | ISRO |
कक्षा का प्रकार / Orbit Type: | SSPO |
https://timesofindia.indiatimes.com/india/mission-shakti-and-a-sat-missile-test-all-you-need-to-know/articleshow/68594586.cms
Цитировать'Mission Shakti' and ASAT missile test: All you need to know
TIMESOFINDIA.COM | Mar 27, 2019, 01.43 PM IST
(https://img.novosti-kosmonavtiki.ru/194845.jpg)
NEW DELHI: Prime Minister Narendra Modi announced on Wednesday that India successfully targeted a live satellite on low earth orbit. The missile test has put India in the space "super league". Here's all you need to know:
What was the test?
On March 27, 2019 India conducted Mission Shakti, an anti-satellite missile test, fr om the Dr A P J Abdul Kalam Island launch complex. This was a technological mission carried out by DRDO. The satellite used in the mission was one of India's existing satellites operating in lower orbit. The test was fully successful and achieved all parameters as per plans. The test required an extremely high degree of precision and technical capability.
The significance of the test is that India has tested and successfully demonstrated its capability to interdict and intercept a satellite in outer space based on complete indigenous technology.
With this test, India joins an exclusive group of space faring nations consisting of USA, Russia and China.
Спойлер
(https://img.novosti-kosmonavtiki.ru/192447.webp)India successfully shoots down satellite in space: PM Modi (https://timesofindia.indiatimes.com/india/india-successfully-shoots-down-satellite-in-space-pm-modi/articleshow/68593732.cms)
Which satellite was used?
The satellite used was an Indian satellite.
Which Missile/Interceptor was used?
The DRDO's Ballistic Missile Defence interceptor was used, which is part of the ongoing ballistic missile defence programme.
(https://img.novosti-kosmonavtiki.ru/192449.webp)Target destroyed by India's A-SAT missile was an out of service Indian satellite (https://timesofindia.indiatimes.com/india/target-destroyed-by-indias-a-sat-missile-was-an-out-of-service-indian-satellite/articleshow/68594265.cms)
There are other ways to demonstrate ASAT capabilities such as "fly-by tests" and Jamming. Why has India used the particular technology of Kinetic Kill?
This is a technology where we have developed capability. Space technologies are constantly evolving. We have used the technology that is appropriate to achieve the objectives set out in this mission.
Does the test create space debris?
The test was done in the lower atmosphere to ensure that there is no space debris. Whatever debris that is generated will decay and fall back onto the earth within weeks.
(https://img.novosti-kosmonavtiki.ru/192448.webp)'Mission Shakti': India's first anti-satellite missile system that destroyed a LEO satellite (https://timesofindia.indiatimes.com/business/india-business/mission-shakti-indias-first-anti-satellite-missile-system-that-destroyed-a-leo-satellite/articleshow/68594026.cms)
Why did we do the test?
India has a long standing and rapidly growing space programme. It has expanded rapidly in the last five years. The Mangalyaan Mission to Mars was successfully launched. Thereafter, the government has sanctioned the Gaganyaan Mission which will take Indians to outer space.
India has undertaken 102 spacecraft missions consisting of communication satellites, earth observation satellites, experimental satellites, navigation satellites, apart from satellites meant for scientific research and exploration, academic studies and other small satellites. India's space programme is a critical backbone of India's security, economic and social infrastructure.
The test was done to verify that India has the capability to safeguard our space assets. It is the Government of India's responsibility to defend the country's interests in outer space.
(https://img.novosti-kosmonavtiki.ru/192446.webp)India's A-SAT not against any country: PM Modi (https://timesofindia.indiatimes.com/india/pm-narendra-modi-address-to-nation-highlights/articleshow/68592668.cms)
Why was the test done now?
The tests were done after we had acquired the required degree of confidence to ensure its success, and reflects the intention of the government to enhance India's national security. India has seen an accelerated space development programme since 2014.
Is India entering into an arms race in outer space?
India has no intention of entering into an arms race in outer space. We have always maintained that space must be used only for peaceful purposes. We are against the weaponization of Outer Space and support international efforts to reinforce the safety and security of space based assets.
India believes that Outer space is the common heritage of humankind and it is the responsibility of all space-faring nations to preserve and promote the benefits flowing from advances made in space technology and its applications for all.
India is a party to all the major international treaties relating to Outer Space. India already implements a number of Transparency and Confidence Building Measures(TCBMs) – including registering space objects with the UN register, prelaunch notifications, measures in harmony with the UN Space Mitigation Guidelines, participation in Inter Agency Space Debris Coordination (IADC) activities with regard to space debris management, undertaking SOPA (Space Object Proximity Awareness and COLA (Collision Avoidance) Analysis and numerous international cooperation activities, including hosting the UN affiliated Centre for Space and Science Technology Education in Asia and Pacific. India has been participating in all sessions of the UN Committee on the Peaceful Uses of Outer Space.
India supported UNGA resolution 69/32 on No First Placement of Weapons on Outer Space. We see the No First Placement of weapons in outer space as only an interim step and not a substitute for concluding substantive legal measures to ensure the prevention of an arms race in outer space, which should continue to be a priority for the international community.
India supports the substantive consideration of the issue of Prevention of an Arms Race in Outer Space (PAROS) in the Conference on Disarmament wh ere it has been on the agenda since 1982.
What is the international law on weapons in outer space?
The principal international Treaty on space is the 1967 Outer Space Treaty. India is a signatory to this treaty, and ratified it in 1982. The Outer Space Treaty prohibits only weapons of mass destruction in outer space, not ordinary weapons.
India expects to play a role in the future in the drafting of international law on prevention of an arms race in outer space including inter alia on the prevention of the placement of weapons in outer space in its capacity as a major space faring nation with proven space technology.
India is not in violation of any international law or Treaty to which it is a Party or any national obligation.
Is the test directed against any country?
The test is not directed against any country. India's space capabilities do not threaten any country and nor are they directed against anyone.
At the same time, the government is committed to ensuring the country's national security interests and is alert to threats from emerging technologies. The capability achieved through the Anti-Satellite missile test provides credible deterrence against threats to our growing space-based assets from long range missiles, and proliferation in the types and numbers of missiles.
Независимые аналитики склонны считать, что индийская противоспутниковая ракета поразила недавно запущенный КА Microsat-R (2019-006A)
https://sattrackcam.blogspot.com/2019/03/indias-surprise-asat-test-of-27-march.html
ЦитироватьWednesday, 27 March 2019
India's surprise ASAT test of 27 March 2019
(https://img.novosti-kosmonavtiki.ru/124502.jpg) (https://3.bp.blogspot.com/-0Vf8SAgsL18/XJuMcS_qocI/AAAAAAAAFoM/cvu-X8lAjYkqfofzOA9yt816Nk4H6VGOQCLcBGAs/s1600/kaart2_detail_150dpi_anot.jpg)
click map to enlarge
The Indian Prime Minister Narendra Modi made a surprise announcement (https://timesofindia.indiatimes.com/india/mission-shakti-and-a-sat-missile-test-all-you-need-to-know/articleshow/68594586.cms) in the morning of 27 March 2019, claiming that India conducted an anti-satellite (ASAT) test that night under the codename "Mission Shakti".
In the hours after the announcement, some sparse details (https://www.mea.gov.in/press-releases.htm?dtl/31179/Frequently_Asked_Questions_on_Mission_Shakti_Indias_AntiSatellite_Missile_test_conducted_on_27_March_2019) appeared in Government statements and the Indian press: these included that the launch of the interceptor took place from Abdul Kalam island on the Indian East Coast, and the target was intercepted at an altitude of ~300 km. The missile used was a three-staged missile (https://twitter.com/manupubby/status/1110831398170968065) with two solid fuel boosters. The target satellite was not identified, other than that it was an Indian satellite.
T.S. Kelso (https://twitter.com/TSKelso/status/1110844419333337088), @Dutchspace (https://twitter.com/DutchSpace/status/1110833431523545088) on twitter and myself (https://twitter.com/Marco_Langbroek/status/1110861054010105858) were however able to identify the target as being likely Microsat-r (2019-006A), a 740 kg Indian military satellite launched two months earlier, on 24 January 2019, on PLSV-C44 from Satish Dhawan Space Centre. We were also able to determine that the test must have happened near 5:40 UT (27 March 2019).
There are only two Indian satellites that fit an orbital altitude of ~300 km: Microsat-r (2019-006A) and Microsat-TD (2018-004T). Of these, Microsat-r was in a very low orbit (roughly 260 x 285 km). It would also pass right over Abdul Kalam island around 5:42 UT on 27 March 2019.
Спойлер
A Maritime Area Warning for "Hazardous operations" was given out before the test, which in hindsight is likely related to the test:
ЦитироватьHYDROPAC 955/19
NORTHERN INDIAN OCEAN.
BAY OF BENGAL.
INDIA.
DNC 03.
1. HAZARDOUS OPERATIONS 0430Z TO 0830Z DAILY
27 AND 30 MAR IN AREA BOUND BY
20-48.06N 087-02.24E, 18-07.27N 086-25.03E,
01-46.62N 087-30.52E, 02-57.91N 093-50.49E,
18-33.79N 088-46.21E, 20-48.95N 087-06.99E.
2. CANCEL THIS MSG 300930Z MAR 19.//
Authority: NAVAREA VIII 248/19 221002Z MAR 19.
Date: 222130Z MAR 19
Cancel: 30093000 Mar 19
Plotted on a map, it defines an elongated conical hazard area with the tip at Abdul Kalam island. The hazard area fits an object in a polar orbit. Moreover,
it exactly fits the track of Microsat-r:
(https://img.novosti-kosmonavtiki.ru/124502.jpg) (https://3.bp.blogspot.com/-0Vf8SAgsL18/XJuMcS_qocI/AAAAAAAAFoM/cvu-X8lAjYkqfofzOA9yt816Nk4H6VGOQCLcBGAs/s1600/kaart2_detail_150dpi_anot.jpg)
click map to enlarge
(https://img.novosti-kosmonavtiki.ru/124763.jpg) (https://4.bp.blogspot.com/-pqBcRXbxE3o/XJuSv3bXFDI/AAAAAAAAFoY/RKGFsHXuw7Q_wyJck6PVtDKA39yuaGV7QCLcBGAs/s1600/Kaart3_fullworld_150dpi_anot.jpg)
click map to enlarge
The fit shows that the intercept might have occured near
5:40 UT, give or take a few minutes, at
283 km altitude while Microsat-r was northbound moving towards Abdul Kalam island. The fit to the hazard area is excellent.
Microsat-r was launched by PLSV-C44 on 24 January 2019, ostensibly as a military earth observation satellite (https://spaceflightnow.com/2019/01/24/pslv-c44-launch/). The satellite was initially in a 240 x 300 km orbit but manoeuvered into a more circular, less eccentric ~260 x 285 km late February.
(https://img.novosti-kosmonavtiki.ru/124764.jpg) (https://4.bp.blogspot.com/-pS3JzemPzDY/XJuVlTD9jhI/AAAAAAAAFow/zu1AJ52aclQqA3YRvPHZaHCfWYESBW8rACLcBGAs/s1600/PLSV_ISRO.jpg)
photo: ISRO
(https://img.novosti-kosmonavtiki.ru/124218.jpg) (https://1.bp.blogspot.com/-a2BIGt90MJY/XJucX_rV_fI/AAAAAAAAFo8/KUZXva4r9KsN-hbnaCH_Y_0Xx0084cDewCLcBGAs/s1600/INDIA_ASAT_MICROSATr_3D.jpg)
click illustration to enlarge
(https://img.novosti-kosmonavtiki.ru/124776.png) (https://4.bp.blogspot.com/-YBhnhfpSJIA/XJuVDfNiJlI/AAAAAAAAFok/0IfwoKW3-7Y52nJnG3q0DdwjH0cLSZA4gCLcBGAs/s1600/apo_peri.png)
click diagram to enlarge
(https://img.novosti-kosmonavtiki.ru/124432.png) (https://2.bp.blogspot.com/-BB0h7CdAXrQ/XJuVGZ9yDpI/AAAAAAAAFoo/iIrfqpfZKpMR5shJMKMNFh34GApE_vTbwCLcBGAs/s1600/ecc.png)
click diagram to enlarge
With this ASAT test, India joins a very small number of countries who have shown to have ASAT capabilities: the USA, Russia, and China. The test will certainly cause uneasiness with several countries and provoke diplomatic reactions and condemnation. This is technology many countries do not like to see proliferate, and testing ASAT weapons in space is widely seen as irresponsible, because of the large number of debris particles it generates on orbit, debris that can be a threat to other satellites. Our modern society is highly reliant on satellite technologies, so any threat to satellites (either from ASAT test debris, or by deliberate ASAT targetting) is a serious threat.
In this case, because of the low altitude of the target satellite, the debris threat will be limited (but not zero). Few satellites orbit at this altitude (the ISS for example orbits over 100 km higher). The vast majority of debris generated will quickly reenter into the earth atmosphere, most of it within only a few weeks. But previous ASAT tests like the Chinese Fengyun 1C intercept in 2007 (https://en.wikipedia.org/wiki/2007_Chinese_anti-satellite_missile_test) and the USA's response to that, "Operation Burnt Frost (https://en.wikipedia.org/wiki/Operation_Burnt_Frost)" destroying the malfunctioned spy satellite USA 193 in 2008, have shown that a few debris pieces will be ejected into higher orbits, so even at this low altitude the danger of such a test is not zero. Nevertheless, the Indian government seems to have learned from the outcry following China's 2007 test, and they specifically point out the lower altitude of their intercept target, and the lower risk stemming from that.
As to the "why" of the test, there are several answers, some of which can be read in this excellent twitter thread (https://twitter.com/brianweeden/status/1110898847990104071) by Brian Weeden. One reason is military posturing towards China. Another one, as Brian points out, is the current emerging call to restrict ASAT tests: India perhaps wanted to have a test in before these calls result in international treaties prohibiting them. Last but not least, the test could perhaps also be a first step towards an anti-ballistic missile system.
https://tass.ru/mezhdunarodnaya-panorama/6277349
Цитировать30 МАР, 15:58
США отслеживают около 250 обломков после испытания Индией противоспутникового оружия
При этом отмечается, что в данный момент эти обломки не угрожают МКС
НЬЮ-ДЕЛИ, 30 марта. /ТАСС/. США отслеживают в космосе около 250 объектов, на которые распался индийский спутник после того, как военные страны 27 марта в ходе испытаний поразили его противоспутниковой ракетой. Об этом сообщило в субботу информационное агентство PTI (http://www.ptinews.com/) со ссылкой на представителей Пентагона.
Спойлер
По этим данным, Объединенное командование космических операций (Joint Force Space Component Command, JFSCC) Стратегического командования ВС США постоянно наблюдает за этими обломками и будет продолжать наблюдение до того, как части спутника войдут в атмосферу Земли. "JFSCC активно следит за обломками, образовавшимися в результате этого события [индийских испытаний], и уведомления о сближении передаются владельцам и операторам спутников в соответствии со стандартной процедурой через веб-сайт Минобороны США", - приводит информагентство информацию Пентагона.
В данный момент Международной космической станции эти обломки не угрожают: орбита МКС более чем на 100 км выше, чем орбита, на которой Индия испытала противоспутниковую систему.
Премьер-министр Индии Нарендра Моди в телеобращении к нации в минувшую среду сообщил, что ВС страны успешно испытали собственное противоспутниковое оружие, сбив аппарат на низкой околоземной орбите. Моди отметил, что после этого испытания Индия вошла в число космических сверхдержав вслед за США, Россией и Китаем.
МИД Индии выступил с заявлением, в котором отмечается, что страна не намерена вступать в гонку вооружений в космосе и выступает за мирное освоение космического пространства. Испытания не были направлены против какой-либо страны, подчеркивает МИД. Индийское внешнеполитическое ведомство также отметило, что испытания прошли на относительно небольшой высоте, чтобы после них на орбите не осталось никакого космического мусора. Все обломки, на которые распался уничтоженный аппарат, упадут на Землю в течение нескольких недель, указало министерство.
https://ria.ru/20190405/1552411715.html
ЦитироватьОколо 50 обломков сбитого Индией спутника летают на орбитах выше МКС
10:54
МОСКВА, 5 апр - РИА Новости. Около 60 обломков сбитого Индией своего военного спутника Microsat-R внесены в публикуемый на специализированном сайте space-track.org каталог ВВС США, из них почти 50 попали на орбиты выше МКС.
Премьер-министр Индии Нарендра Моди сообщил, что 27 марта его страна успешно испытала противоспутниковое оружие собственной разработки, поразив спутник на низкой околоземной орбите. Премьер назвал это событие историческим. По его словам, до этого лишь три страны в мире: США, Россия и Китай - добились таких достижений. Комментируя прошедшие испытания, глава НАСА Джим Брайденстайн заявил, что они привели к появлению 400 объектов космического мусора, а риск столкновения МКС с обломками вырос более чем на 40%.
Всего к настоящему моменту в американский военный каталог внесены 57 обломков, которые получили номера с 44117 по 44173. Они находятся на орбитах с минимальной высотой от 159 до 282 километров и максимальной - от 241 до 2248 километров. При этом 46 обломков летают на орбитах выше орбиты МКС (около 400 километров).
Научный руководитель Института космической политики Иван Моисеев пояснил РИА Новости, что все объекты, которые пересекают высоту полета МКС, а обломки индийского спутника движутся по кругу с высот 200 км до 2250 км и обратно - потенциально угрожают станции. В то же время это не очень сильная угроза, потому что наклонение у данных обломков не такое как у МКС из-за чего вероятность столкновения не велика. "Угроза со стороны индийского спутника существует, но она крайне маловероятна", - отметил Моисеев.
Индийский военный спутник дистанционного зондирования Земли Microsat-R был запущен ракетой-носителем PSLV в январе 2019 года с космодрома на острове Шрихарикота. В момент уничтожения противоракетой он находился на орбите высотой около 270 километров. Данный космический аппарат массой 740 килограммов был создан индийской Организацией оборонных исследований и разработок DRDO, которая 27 марта осуществила пуск противоспутниковой ракеты с полигона на острове Абдула Калама.
Спойлер
В СССР в 1980-х годах на боевом дежурстве стояла система противокосмической обороны (программа "Истребитель спутников"). Комплекс включал ракету-носитель "Циклон-2" с космическим аппаратом-перехватчиком, выводящимся на околоземную орбиту с космодрома Байконур. В ходе испытаний комплекса были проведены успешные перехваты на орбите других советских спутников-мишеней.
В сентябре 1985 года США с помощью высокомобильной противоспутниковой ракеты ASM-135 ASAT, запущенной с истребителя F-15, на высоте 555 километров сбили свой научный астрофизический спутник Solwind. В феврале 2008 года американской корабельной противоракетой SM-3 был успешно уничтожен военный спутник USA-193.
В январе 2007 года Китай с помощью противоспутниковой ракеты, запущенной с космодрома Сичан, поразил свой метеорологический космический аппарат Fengyun-1C на высоте 865 километров. В результате на орбите образовалось облако из более чем 2000 обломков, что вынуждало МКС и другие космические аппараты выполнять маневры уклонения от них.
Миссия "Шакти" (27.03.2019)
Цитировать'Deterrence Is The Best Defence, India Demonstrated That'
Strategic News International (https://www.youtube.com/channel/UChIuM0Zpi3WQtV0q91fwXHg)
Опубликовано: 6 апр. 2019 г.
No further anti-satellite tests are required since Indian space scientists took out a satellite in low earth orbit 10 days ago, said G. Satheesh Reddy, Chairman of India's Defence Research & Development Organisation (DRDO). Briefing the media on the test, Dr Reddy confirmed that the same technologies and capability could be used to destroy multiple satellites if required and at altitudes of up to 1000 km.
Спойлер
Dr Reddy said the International Space Station was 120 km above the test site, so there was no danger from debris. "Our computer simulations also showed that debris can go up but the possibility of hitting the space station is not there. The risk is for 10 days only which ends today. Simulations also showed that all debris will decay within 45 days of the test."
Deputy National Security Adviser Pankaj Saran, who was present, pointed out that "There were four public statements on the debris issue from the U.S., one each from the State Department, the Pentagon, the Acting Secretary of Defense and the NASA chief who was addressing his employees during a town hall meeting."
He said we go by the State Department which said, "We took note of the Indian Government's statement that the test was designed to address space debris issues."
Dr Reddy was cautious about the way forward, indicating that research would go ahead on lasers and directed energy, adding that any decision on weaponisation had to come from government. "But the best defence is deterrence and we have demonstrated that."
Some technical details were shared: the kill vehicle moved in on the target at a speed of 10 km per second and the terminal phase (the time before collision) was only 20 seconds. This required precision guidance provided by the indigenous "seeker". "Ninety per cent of the technologies and sub-systems are indigenous," Dr Reddy said, lauding the efforts of the 150-strong team of scientists and engineers, including 30-40 women scientists.
Deputy NSA Saran said there was no question of conducting the A-Sat test in secret. A NOTAM (Notice To Airmen) was issued to alert the aviation authorities of various countries that a space test is to be conducted during such and such period.
He said that as a country with a sophisticated space programme, India abided by all international obligations. "The test was science and technology driven and as a matter of policy, India is engaged in all relevant international negotiations on outer space. Last year and again last month, experts met to discuss issues relating to space and outer space."
https://www.youtube.com/watch?v=AK0tc87_n-4https://www.youtube.com/watch?v=AK0tc87_n-4 (https://www.youtube.com/watch?v=AK0tc87_n-4) (4:02)
Цитировать(https://img.novosti-kosmonavtiki.ru/35041.jpg)Ankit PandaПодлинная учетная запись @nktpnd (https://twitter.com/nktpnd) 22 ч. назад (https://twitter.com/nktpnd/status/1114568074626240514)
Also confirms that Microsat-R was indeed launched by India with the intention of serving as the HTK ASAT target. That again shores up the evidence around the circumstances of the failed Feb 12 test, as I discussed last week.
(https://img.novosti-kosmonavtiki.ru/160697.jpg)
(https://img.novosti-kosmonavtiki.ru/160698.jpg)
(https://img.novosti-kosmonavtiki.ru/160699.jpg)
(https://forum.novosti-kosmonavtiki.ru/forum/file/94644) (https://forum.novosti-kosmonavtiki.ru/forum/file/94645)
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 12 мин. назад (https://twitter.com/planet4589/status/1115109974462685185)
Average orbit height vs time for objects from the Microsat-R launch. Microsat-R in red, PS4 stage green, debris blue. Will be more interesting in a few weeks as the debris decay curves fill in.
(https://img.novosti-kosmonavtiki.ru/160744.jpg)
11 мин. назад (https://twitter.com/planet4589/status/1115110421793595392)
... note that we can already see that not all the debris objects have the same decay rate.
Цитировать(https://img.novosti-kosmonavtiki.ru/185295.jpg)T.S. Kelso @TSKelso (https://twitter.com/TSKelso) 6 ч. назад (https://twitter.com/TSKelso/status/1116413559766786048)
Although we expect some of the debris from the Indian ASAT test to remain in orbit for many months or longer, we are seeing some of the 70 initially identified objects as having decayed: https://celestrak.com/satcat/decayed.php ... (https://t.co/zdrwrFiy0X).
(https://img.novosti-kosmonavtiki.ru/160604.jpg)
ЦитироватьIndia's DRDO reveals details of recent ASAT missile test
NEW DELHI TIMES (https://www.youtube.com/channel/UClW2Bigd7xuYbGx0hVngmRw)
Опубликовано: 11 апр. 2019 г.
India's government-run Defence Research and Development Organisation (DRDO) has revealed additional details about the successful test-firing on 27 March of its first anti-satellite (ASAT) missile that destroyed one of the country's own satellites in space.
Спойлер
Briefing the media on 6 April, DRDO head G Satheesh Reddy stated that the 13 m-high, three-stage interceptor missile, which was fitted with two solid-propellant rocket motor stages and a hit-to-kill capable 'Kill Vehicle' (KV), was employed to target the satellite under 'Mission Shakti' (Strength).
He said the KV's onboard advanced terminal guidance system, which featured a strap-down (non-gimballed) imaging infrared (IIR) seeker and an inertial navigation system that used ring-laser gyroscopes (RLGs), detected and tracked the 740 kg Microsat-R Earth observation satellite at an altitude of 283 km in low-Earth orbit (LEO).
The DRDO-designed satellite had been specially launched by the Indian Space Research Organisation (ISRO) two months earlier for the ASAT missile test, which had been under planning since 2016 and had also undergone numerous simulation trials.
Reddy explained that after the two rocket motor stages had taken the ASAT missile to the required height and velocity, the nose tip heat shield was ejected and the IIR seeker, located within the very front of the nose, locked onto the target satellite, guiding the KV towards it at a "closing speed" – the velocity of the target and KV combined – of 10 km per second.
Corrections to the KV's flight were made using a thrust-vector control (TVC) system comprising larger thrusters at the top of the KV's rear cylindrical body at roughly its centre of gravity and smaller thrusters near the rear of the KV. Although the DRDO showed videography of the tested TVC system used for the KV, it is not clear whether the thrusters are liquid or solid propellant-based, but they are most likely the latter.
Within seconds, the missile hit the satellite with a 10 cm accuracy, Reddy said, comparable with the "best reported performance of ASAT missiles".
He said the radar, data, and communication links of the DRDO-designed ballistic missile defence (BMD) system that were deployed across a wide ground span had effectively tracked the entire satellite interception by the ASAT missile.
"The ASAT missile's guidance and control algorithm was developed to intercept satellites [at an altitude of more than] 1,000 km, but the mission was planned at the lowest possible orbit of 283 km, well below the orbit of other space objects to avoid the threat of debris," said Reddy.
The interception, he stated, was "specially designed" to strike the satellite at an angle so as to ensure "minimal debris".
Reddy said the ISRO had "deliberately" launched the target satellite into an orbit under 300 km to ensure that it remained about 120 km below the International Space Station (ISS).
"Some of the debris has already decayed," the DRDO head said in response to US officials from NASA, who have claimed that 'Mission Shakti' has raised the danger of 200–300 pieces of debris from the targeted satellite striking the ISS by about 44%.
https://www.youtube.com/watch?v=dSLPHRnzlsYhttps://www.youtube.com/watch?v=dSLPHRnzlsY (https://www.youtube.com/watch?v=dSLPHRnzlsY) (2:17)
или только текст - https://www.newdelhitimes.com/indias-drdo-reveals-details-of-recent-asat-missile-test/
https://thediplomat.com/2019/05/why-indias-asat-test-was-reckless/
ЦитироватьWhy India's ASAT Test Was Reckless
Publicly available data contradicts official Indian assertions about its first anti-satellite test.
By Marco Langbroek
April 30, 2019
India conducted its first successful anti-satellite (ASAT) test, dubbed "Mission Shakti," on March 27, 2019. Using a so-called PDV Mark II missile, a modified version of India's Prithvi Defense Vehicle (PDV) anti-ballistic-missile interceptor, India's Defense Research and Development Organization (DRDO) destroyed the Microsat-r satellite orbiting at 285 kilometers in altitude. Microsat-r (COSPAR designation 2019-006A) was a 740 kilogram satellite launched by India two months earlier to serve as a target for the test.
In the aftermath of the test, accusations quickly emerged — including fr om NASA administrator Jim Bridenstine — that the debris generated by the test endangered other satellites. India was quick to claim it had acted "responsibly." The Indian government pointed out that the test was performed at low altitude, below 300 km, in order to avoid creating debris at the altitudes of operational satellites in Low Earth Orbit (many of which orbit at altitudes between 400 and 1200 km).
In a press conference, DRDO chairman Dr. Sateesh Reddy, in addition, claimed that the kill-vehicle hit Microsat-r in what he described (https://www.youtube.com/watch?v=zQf-JvzUElg&feature=youtu.be&t=170) as an "almost direct hit in the same plane," i.e. head-on. This was done — or so it was claimed — in order to minimize the ejection of debris fragments into higher orbits. The Indian government maintains that the test yielded a negligible risk to operational satellites at higher altitudes. It has claimed (https://www.tribuneindia.com/news/nation/asat-test-space-debris-to-vanish-in-45-days-drdo/749813.html) that most debris fragments re-entered into the Earth's atmosphere within two days of the test, and that all of it would re-enter within 45 days.
But are these Indian government claims true? An in-depth analysis of publicly available data from both DRDO and U.S. military sources shows that this test wasn't conducted as "responsibly" as the Indian government claims. Debris did end up orbiting at higher altitudes well within the altitude range of operational satellites, including the International Space Station (ISS). The debris fragments currently being tracked by the U.S. military's tracking network will take considerably more than 45 days to re-enter into the atmosphere. Moreover, telemetry data included in a video released by the Indian DRDO indicates that the kill vehicle did not hit the target satellite head-on as the DRDO claims, but under a clear upwards angle, which would eject fragments to higher orbits.
The Timing of the ASAT Test
Спойлер
From information released by the DRDO, we know that the PDV-Mk II missile was launched from the missile test range at Abdul Kalam island (formerly known as Wheeler island) on the Indian coast around 11:09 a.m. Indian Standard Time (5:39 a.m. GMT). This time was independently confirmed by U.S. military sources, likely based on observations by their space-based infrared system (SBIRS) early warning satellites. Indian sources say the missile had a flight-time of 168 seconds (https://english.manoramaonline.com/news/nation/2019/03/27/mission-shakti-drdo-asat-missile-hit-microsat-r-isro.html). From a video released by DRDO showing the kill vehicle's impact into Microsat-r as imaged by an earth-based infrared camera on the Indian coast, we can pinpoint the intercept time at 5:42:15.5 GMT. This would place the launch as having taken place around 5:39:27 GMT. The orbital position of the target satellite at 5:42:15.5 GMT, the moment of intercept, was within a kilometer of 18°.715 N, 87°.450 E at an altitude of 284 km.
(https://img.novosti-kosmonavtiki.ru/143175.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig1_map.jpg)
Fig. 1: map showing the approach trajectory of the target satellite (white), the missile launch site and intercept location (yellow), and the hazard area for the test (red) from a Maritime Area Warning. Map by the author.
(https://img.novosti-kosmonavtiki.ru/143176.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig2_3d_reco.jpg)
Fig. 2: 3D reconstruction of the approximate intercept geometry, created by the author using STK. This reconstruction modelled a direct ballistic ascent.
An OSINT Treasure Trove
Shortly after the test, DRDO released a propaganda video (https://www.youtube.com/watch?v=aYx8NYI17AU) that contains two highly interesting fragments of video footage from the actual test. One is a short sequence of images from the infrared target seeking camera on the missile itself. The other is a sequence of footage taken by an earth-based infrared camera on the Indian coast.
It is the latter footage that contains a lot of information useful for the purpose of this analysis and is, in fact, an OSINT treasure trove. A clock running in the footage yields an accurate time of the kill vehicle impact. But more importantly, the footage appears to contain telemetry information from the missile: azimuth (direction), elevation, and range (distance) to the camera. The footage covers the last 2.7 seconds of the missile's flight up to impact, and some 2 seconds after the impact as well, showing the expanding debris cloud.
(https://img.novosti-kosmonavtiki.ru/143177.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig3_ircam_telemetry.jpg)
Fig 3: still frame from DRDO released video footage of the intercept, as captured by an infrared camera on the Indian coast. Yellow annotations indicate missile telemetry data in the video frame.
Based on U.S. tracking data from U.S. Strategic Command's Combined Space Operations Center (CSpSOC), we know the position of Microsat-r, the target satellite, at the time of impact. We therefore can use the missile's azimuth, elevation, and range information in the video frame showing the impact moment to find the location of the earth-based camera. This camera was located on the Indian coast near 21°.34 N, 86°.91 E, some 15 km southwest of Chandipur ITR. This location is near the point wh ere the forward prolonged trajectory of the target satellite crossed the Indian coast. As the satellite position has an approximately 1 km uncertainty inherent to orbital elements in CSpOC's two-line element (TLE) set format, there is a similar uncertainty in the camera location.
(https://img.novosti-kosmonavtiki.ru/143178.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig-4_sensor_location.jpg)
Fig 4: reconstructed location of the infrared camera.
Knowing the camera location, we can next use the telemetry data in the frames to reconstruct the trajectory of the missile during the last 2.7 seconds prior to impact with Microsat-r, and compare it to the trajectory of Microsat-r itself.
In order to do this, we can create a flat plane through the camera sensor, tangent to the earth surface at the camera location. Azimuth, elevation and range data from the footage then give us Cartesian positions and elevations with respect to this reference plane. In this way, we don't have to be bothered by the earth's curvature, and it greatly simplifies calculations. We are only interested in the relative geometry of the satellite and missile tracks, so this approach is sufficient.
(https://img.novosti-kosmonavtiki.ru/143179.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig5_reference_plane.jpg)
Fig 5: graphical representation of the reference frame used, a flat plane through the sensor location tangent to the earth surface.
In the diagrams that follow, positions are expressed as delta X and delta Y (in km) in the reference plane with respect to the camera location, and altitude over the reference plane (note: this is not the same as the altitude above the earth's surface). The Y-axis points north, the X-axis east. As we had to work with limited resolution frames extracted from a YouTube video, occasional errors in deciphering the telemetry numbers cause some small occasional jitters in the reconstructed missile trajectory. Nevertheless, the results are very consistent.
The first diagram shows the missile and satellite trajectories when viewed top-down (i.e. "from above"): black is the missile and red the satellite. The solid lines give the trajectories up to the moment of impact, the dashed lines give post-impact trajectories. The approximately 1 km positional error in the satellite's trajectory is indicated in grey.
Seen from this perspective, the hit appears to be almost head-on, with the missile first crossing the satellite trajectory from the east and then impacting while homing in slightly from the west, relative to the satellite's movement vector. The latter is, as we will see, in keeping with two other lines of evidence.
(https://img.novosti-kosmonavtiki.ru/143180.png) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig6_horizontal-encounter-geometry.png)
Fig 6: missile trajectory in the horizontal plane, reconstructed from telemetry data in the DRDO video.
When we look at the missile trajectory from a vertical perspective, i.e. "from the side", the situation looks quite different, with interesting implications. It becomes clear that, far from hitting "head-on," the missile hit with a clear upwards angle of approximately 48 degrees with the horizontal (or 135 degrees with respect to the satellite's direction of movement).
This runs counter to DRDO chairman Sateesh Reddy's assertion of a "head-on" hit designed to reduce the risk of debris being ejected into higher orbits. An impact coming from below increases the risk of fragments being ejected to altitudes above the target satellite's original orbit.
(https://img.novosti-kosmonavtiki.ru/143181.png) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig7_ertical-ascend-profile.png)
Fig 7: missile trajectory in the vertical plane, reconstructed from telemetry data in the DRDO video.
A second line of evidence — footage from the infrared target seeking camera on the missile itself — also indicates a hit coming from below, in an upwards direction. The last frames of this footage show the infrared silhouette of the satellite, including its solar panels. They appear to show the latter full-on:
(https://img.novosti-kosmonavtiki.ru/143182.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig8_missilecam_solarpanels.jpg)
Fig 8: final image of the target seeking camera on the missile, showing the solar panels of the target satellite, from the DRDO video.
Would the impact have been "head-on," i.e. moving into a direction opposite to the satellite's movement vector, the solar panels should not have been visible full-on, but edge-on, given the sun-satellite-missile geometry at that moment. Solar panels are normally pointed toward the sun. A hit under an upwards angle, by contrast, would show the solar panels almost head-on, as in the footage. Hence, like the earth-based footage, the footage from the missile target seeking camera contradicts a "head-on" hit. These two lines of evidence are therefore consistent, supporting the same conclusion: that DRDO's claims about the nature of the intercept were not entirely true.
(https://img.novosti-kosmonavtiki.ru/143183.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig9_solar_panel_geometry.jpg)
Fig 9: Geometry reconstructions for two intercept scenarios by the author, using STK. One shows a "head-on"hit, the other a hit coming under an upwards angle from below. Note the differing views of the solar panels in both scenarios.
Interestingly enough, and perhaps unintentionally telling, the DRDO propaganda video has an animation of the intercept that at one point also features a steep upwards angle, consistent with a direct ballistic ascent.
(https://img.novosti-kosmonavtiki.ru/143166.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig10_intercept_drdo_anim_still.jpg)
Fig 10: Still image from DRDO video showing a graphical depiction of the missile trajectory. Compare to the author's reconstruction.
Expanding Debris Cloud
After the kill vehicle hit the satellite, an expanding debris cloud was created that quickly spread. Knowing the position of the camera, we can actually plot the trajectory of the target satellite on the infrared imagery of this rapidly expanding debris cloud. We see the cloud expanding along the satellite track, notably in a forward direction (which is logical, as with an impact coming from below, the forward momentum from the 7.8 km/s moving satellite is the largest contributor to debris fragment speed vectors).
(https://img.novosti-kosmonavtiki.ru/143167.jpg) (https://img.novosti-kosmonavtiki.ru/143167.jpg)
Fig 11: satellite trajectory as seen from the camera location, as overlaid on a frame from the DRDO video showing the expanding debris cloud. Satellite movement was from bottom to top.
Relative Speed of Impact
From the telemetry-based trajectory reconstruction, the missile reached a speed on the order of 3.1 to 3.4 km/s. Taking into account the 7.8 km/s orbital speed of the satellite, as well as the directions of their movement vectors, a relative speed in the order of 9.9-10.0 km/s on impact is indicated. This is close to the 9.8 km/s value given by U.S. military sources. It is less than the relative speed indicated in the missile's target seeking camera footage (10.45 km/s).
Post-Impact Trajectory
Interestingly enough, the footage also includes two seconds of missile telemetry after the impact, suggesting part of the missile survived the impact. This post-impact trajectory is indicated by the dashed line in the trajectory reconstructions. In the vertical plane, we see the missile rip through the position of the satellite, the missile remnant continuing its upwards movement, perhaps under a slightly reduced angle. In the horizontal plane (i.e. seen from "above") we see the missile remnant being clearly deflected westwards by the force of the impact, pretty much like a billiards ball hitting another ball under an oblique angle. This indicates a hit which, seen in the horizontal plane, came under a slight angle with the satellite's movement vector. This matches information gleaned from tracked debris fragments, as I will outline below.
Debris Fragments Created
The U.S. military's satellite tracking network, run by CSpOC, has reported it is tracking several hundreds of debris fragments created by the test. At the date of writing, CSpOC has published orbital elements for 84 of these fragments. As these 84 fragments concerns a subset of larger, well tracked fragments out of a much larger not-well or not-at-all tracked fragment population only, these orbits constitute the tip of an iceberg. The orbital elements illustrate the large spread in orbital altitudes of the debris fragments created by the test. The image below shows the orbits of these fragments (red), with the orbit of the ISS (white) shown as comparison:
(https://img.novosti-kosmonavtiki.ru/143168.jpg) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig12_allorbits_debris.jpg)
Fig 12: orbits of debris fragments (red), with the orbit of the International Space Station (white) as a comparison.
One insightful way to present the orbital altitudes of these fragments and assess these at a glance is through a so-called "Gabbard" diagram. Such a diagram shows, for each fragment, the lowest point in its elliptical orbit (its perigee, in red) and the highest point in its orbit (its apogee, blue), as well as the time it takes to complete one orbit around the earth.
While the perigees of the debris fragments are distributed near the altitude of the ASAT test (285 km), the apogees spread over a large range in altitude, up to as high as 2,250 km. Some 79 percent of the tracked fragments have apogee altitudes above the orbital altitude of the International Space Station. The strongest concentration is between 200 km and 900 km altitude (see also the bar diagram), well into the realm of the orbital altitudes of many commercial as well as scientific and military satellites. Hence, these fragments clearly are an impact-threat to other satellites, in contrast to Indian government claims of minimal risks. Close approach tools like SOCRATES show that several debris fragments already have had close approaches to other satellites since the test, and that such potentially dangerous close approaches will continue to happen over the coming weeks and months.
(https://img.novosti-kosmonavtiki.ru/143169.png) (https://img.novosti-kosmonavtiki.ru/143169.png)
Fig 13: Gabbard diagram showing apogee and perigee altitudes of debris fragments. ISS orbital altitude indicated as comparison.
(https://img.novosti-kosmonavtiki.ru/143170.png) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig14_pogee_distribution_microsat_deb.png)
Fig 14: bar diagram of the distribution of debris fragment apogee altitudes. ISS orbital altitude indicated as comparison.
These results should not come as a surprise, to India or anyone else. In 2008, the United States conducted "Operation Burnt Frost," an ASAT demonstration on the malfunctioned USA 193 satellite. That intercept, like the Indian ASAT test, was at low altitude (247 km), but a significant number of fragments nevertheless ended up in much higher orbits.
Orbital Lifetimes of the Fragments
How long will it take before most of the debris created by the Indian ASAT test is cleared from orbit? The Indian government claims most fragments re-entered within hours to days, and that the rest will re-enter within 45 days of the test.
The vast majority of very small fragments created by the ASAT test will likely indeed have re-entered within hours to days of the test. But as we already have seen, there are still plenty that did not. For these, we can estimate orbital lifetimes from the decay parameters of their orbits and an educated guess of future solar activity (solar activity influences the density of the outer layers of the atmosphere). I used SatEvo software and current solar activity values to estimate the re-entry dates of the currently tracked fragments. It suggests that a significant number — almost 50 percent — of the tracked fragments have orbital lifetimes well beyond the 45 days claimed by the Indian government, as the diagram below clearly shows. Rather than 45 days, a better estimate for the maximum debris lifetime would be 45 weeks. Some fragments might even linger on until almost two years after the test.
(https://img.novosti-kosmonavtiki.ru/143171.png) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig15_microsat_debris_lifetimepred.png)
Fig 15: orbital lifetime estimates of the currently tracked debris fragments.
Ejection Velocities
The orbital data for the 84 debris fragments tracked by CSpOC can be used to calculate the ejection velocities of these fragments. The ejection velocity, or delta V, is the extra velocity that was required to eject these fragments into their current orbits, and can be calculated from the change in orbital altitude and orbital inclination for each fragment. For the 84 fragments for which orbital elements are currently available, I calculate ejection velocities in the range of 10 to 300 meter/second, with a few having ejection speeds up to 500 meter/second. The range of ejection velocities is similar to that of the 2008 ASAT demonstration on USA 193 by the Americans. The peak in the delta V distribution of the Indian ASAT test is, however, shifted toward higher ejection velocities compared to the 2008 American ASAT demonstration: the distribution peaks near 100 m/s, while for the 2008 USA 193 intercept it peaks near 40 m/s. On average, the ejection speeds in the Indian ASAT test hence appear to have been somewhat higher than in the 2008 American test, creating peak debris densities at somewhat higher altitudes as a result. The difference might result from a difference in impact angle: the American ASAT test reportedly featured an impact on a downward angle, while the Indian test featured an upwards impact angle, as the above analysis shows. Some caution is in order here, though, as instrumental detection bias might have an unknown influence on the range of orbital altitudes mapped so far.
(https://img.novosti-kosmonavtiki.ru/143172.png) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig16_delta_v_diagram.png)
Fig 16: delta V distribution for the currently tracked debris fragments.
(https://img.novosti-kosmonavtiki.ru/143173.png) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig17_deltav_india_usa193_compared_kerneldensity.png)
Fig 17: delta V distribution kernel density curves for the Indian ASAT test fragments, compared to a similar curve for the 2008 American ASAT demonstration on USA 193. Note the difference in peak position and fall-off slope.
Orbital Inclinations
As seen in a horizontal plane (i.e. from "above"), the kill vehicle was not exactly moving counter to the satellite, but under a very slight angle, with the kill vehicle coming slightly from the west with regard to the satellite's movement vector. The clear westward deflection of the missile remnant after the impact, also points to this.
This hit under a small angle from the west is also born out by the orbits of the resulting debris fragments. The distribution of orbital inclinations of these fragments (the angle their orbits make with the equator) shows a shift towards smaller inclinations, by 0.5 degrees or more, compared to the original Microsat-r orbit. This again points to an impact coming from slightly west of the satellite's vector of movement.
(https://img.novosti-kosmonavtiki.ru/143174.png) (https://manage.thediplomat.com/wp-content/uploads/2019/04/thediplomat-fig18_microsat_debris_inclination_distribution.png)
Fig 18: distribution of orbital inclination of the debris fragments, compared to the orbital inclination of the target satellite Microsat-r.
Conclusions
We can draw a number of conclusions from this analysis. The main conclusion is that the ASAT test was conducted in a less responsible way than originally claimed by the Indian government. First, the missile hit the target satellite on a clear upwards angle, rather than "head-on" as claimed by DRDO. Second and third, the test generated debris with much longer orbital lifetimes (up to 10 times longer), which ended up at much higher altitudes than the Indian government is willing to admit.
As much as 79 percent of the larger debris fragments tracked have apogee altitudes at or above the orbit of the International Space Station. Most of the tracked debris generated by the test orbits between 300 km and 900 km altitude, well into the range of typical orbital altitudes for satellites in Low Earth Orbit. As these debris fragments are in polar orbits, they are a potential threat to satellites in all orbital inclinations at these altitudes. Indeed, several close approaches to satellites have already happened. This threat will persist for up to half a year (rather than the 45 days claimed by the Indian government), with a few fragments lingering on (much) longer, up to almost two years.
The analysis underlines that a 'harmless' ASAT test involving a real intercept of an orbiting target does not exist. The Indian ASAT test and the earlier 2008 American ASAT demonstration show that even intercepts at low altitude create lots of debris that is ejected into higher orbits. And the Indian government in this case made it worse by hitting Microsat-r under an upwards angle, rather than head-on or under a downward angle. As such, this ASAT test was reckless.
Dr. Marco Langbroek is a Space Situational Awareness consultant from the Netherlands.
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 9 мин. назад (https://twitter.com/planet4589/status/1124166142573125632)
Update on Indian ASAT debris: the high orbit debris continues in orbit, decaying very slowly. 8 more pieces newly cataloged today.
(https://img.novosti-kosmonavtiki.ru/161242.jpg)
Объекты испытания "Миссия Шакти", сошедшие с орбиты в апреле 2019 г. (22 объекта)
(https://forum.novosti-kosmonavtiki.ru/forum/file/95752)
Цитировать(https://img.novosti-kosmonavtiki.ru/67619.png)T.S. Kelso @TSKelso (https://twitter.com/TSKelso) 44 мин. назад (https://twitter.com/TSKelso/status/1127027320286535681)
45 days after the Indian ASAT test, 29 of 93 objects we have TLEs for have decayed, with another 5 likely reentered. With 59 still in orbit, that hardly supports India's claim that everything would reenter in 45 days. And these are only the objects large enough to track.
(https://img.novosti-kosmonavtiki.ru/161492.jpg)
ТБМ (3 рАза) :!:
https://tass.ru/kosmos/6420152
Цитировать11 МАЯ, 15:27
В Индии заверили, что большинство обломков после испытаний космического оружия рассеялись
Они сгорают в атмосфере Земли
НЬЮ-ДЕЛИ, 11 мая. /ТАСС/. Большинство обломков, остававшихся на орбите после испытаний индийского космического оружия, постепенно упали и рассеялись. Об этом сообщил журналистам глава индийской Организации оборонных исследований и разработок (DRDO) Сатиш Редди.
"Как я и сказал 6 апреля, обломки должны постепенно упасть через несколько недель. Согласно информации, которую мы имеем, уже рассеялось большинство обломков. И оставшиеся там несколько обломков рассеются за короткий период времени", - цитирует в субботу Редди телеканал NDTV.
Как ранее сообщали представители DRDO, снижающиеся обломки сгорают в атмосфере Земли, не нанося никому ущерба.
Индия испытала 27 марта собственное противоспутниковое оружие, сбив аппарат на низкой околоземной орбите, на высоте порядка 300 км. Вскоре после этого Национальное управление США по аэронавтике и исследованию космического пространства заявило, что в результате испытаний образовалось более 400 обломков, которые могут стать проблемой для Международной космической станции (МКС). Представитель главного центра разведки космической обстановки Минобороны РФ также указал, что обломки, образовавшиеся после испытания Индией противоспутникового оружия, в будущем могут угрожать МКС.
Индия со своей стороны отвергает эти заявления. "Я не думаю, что есть какие-то проблемы [из-за обломков, образовавшихся после испытаний]", - отметил Сатиш Редди.
Испытания противоспутникового оружия получили высокую оценку индийского премьер-министра Нарендры Моди, который отметил, что после этого испытания Индия вошла в число космических сверхдержав вслед за США, Россией и Китаем.
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 3 ч. назад (https://twitter.com/planet4589/status/1132782858244898822)
60 days after the Indian antisatellite test, about half the cataloged debris has reentered. 48 objects still tracked in orbit, 44 objects reentered. Plot shows average height ( (1/2)*(peri+apo)) of each debris object vs time. The higher ones are not coming down anytime soon
(https://img.novosti-kosmonavtiki.ru/161644.jpg)
К #90 (http://novosti-kosmonavtiki.ru/forum/messages/forum12/topic16695/message1855419/#message1855419)
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 6 мин. назад (https://twitter.com/planet4589/status/1133133214304882689)
Per requests of some of you, here is the debris decay plot for the Indian antisatellite test given as perigee (left) and apogee (right) instead of just average height. Note different y axis scales
(https://img.novosti-kosmonavtiki.ru/161681.jpg)
(https://img.novosti-kosmonavtiki.ru/161682.jpg)
4 мин. назад (https://twitter.com/planet4589/status/1133133693613162497)
The message is the same: at least half of the remaining 40 pieces of debris will be up - and threatening other space traffic - for months to come, in contrast to the claims made by the Indian govt at the time.
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/29726.jpg)Joseph Remis @jremis (https://twitter.com/jremis) 28 мая (https://twitter.com/jremis/status/1133286415167627264)
Predicted decay dates for #ASAT (https://twitter.com/hashtag/ASAT?src=hash) objects in orbit.
(https://img.novosti-kosmonavtiki.ru/161692.jpg)
Миссия Шакти
https://tass.ru/kosmos/6484273
Цитировать29 МАЯ, 13:34 Обновлено 13:50
Вероятность столкновения МКС с обломками индийского спутника увеличилась на 5%
Как сообщил исполнительный директор Роскосмоса Сергей Крикалев, такие расчеты провели представители США
МОСКВА, 29 мая. /ТАСС/. Вероятность пробития Международной космической станции (МКС) обломками сбитого ранее индийского спутника увеличилась на 5%. Об этом сообщил в среду исполнительный директор Роскосмоса по пилотируемым космическим программам Сергей Крикалев.
"Американцы провели расчеты по вероятности пробоя станции в связи с появлением дополнительных [обломков] в результате этого разлета. Есть численные оценки увеличения вероятности пробоя примерно на 5%", - сказал Крикалев во время заседания Совета РАН по космосу.
Ранее старший помощник начальника отделения Главного центра разведки космической обстановки Роман Фаттахов рассказал, что после испытаний Индией противоспутникового оружия в результате разрушения аппарата образовалось более 100 обломков, которые в будущем могут создать угрозу МКС.
Спойлер
Премьер-министр Индии Нарендра Моди в телеобращении к нации 27 марта сообщил, что ВС страны успешно испытали собственное противоспутниковое оружие, сбив аппарат на низкой околоземной орбите. Моди отметил, что после этого испытания Индия вошла в число космических сверхдержав вслед за США, Россией и Китаем. Пуск ракеты-перехватчика, разработанной Индийской организацией оборонных исследований и разработок (DRDO), был произведен с полигона, расположенного на острове Абдул Калам в Бенгальском заливе. Сбитый аппарат был индийским спутником.
В новость были внесены изменения (13:47 мск) - добавлены подробности после второго абзаца
Миссия Шакти
Цитировать\(https://img.novosti-kosmonavtiki.ru/29726.jpg)Joseph Remis @jremis (https://twitter.com/jremis) 2 ч. назад (https://twitter.com/jremis/status/1136925417410105345)
Predicted decay dates for #ASAT (https://twitter.com/hashtag/ASAT?src=hash) objects in orbit.
(https://img.novosti-kosmonavtiki.ru/161888.jpg)
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 2 ч. назад (https://twitter.com/planet4589/status/1137783153274343430)
Updated plot of orbit height vs time for Indian ASAT debris
(https://img.novosti-kosmonavtiki.ru/161959.jpg)
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/185119.png)Dr Marco Langbroek @Marco_Langbroek (https://twitter.com/Marco_Langbroek) 23 ч. назад (https://twitter.com/Marco_Langbroek/status/1140279394730160128)
1/4 A brief thread. It is now 2.5 months after the Indian #ASAT (https://twitter.com/hashtag/ASAT?src=hash) test. How much of the #spacedebris (https://twitter.com/hashtag/spacedebris?src=hash) generated is still in orbit, how much is gone? 92 larger debris pieces from the test have been catalogued so far. Half of those are still orbiting today.
(https://img.novosti-kosmonavtiki.ru/162283.png)
23 ч. назад (https://twitter.com/Marco_Langbroek/status/1140279396424736770)
2/4 According to the Indian Government forecast at the time of the test, the last debris pieces should have reentered 45 days after the test, i.e. a month ago. The reality is different. 45 days after the test, barely 3040% of the tracked larger debris had reentered.
(https://img.novosti-kosmonavtiki.ru/162284.jpg)
23 ч. назад (https://twitter.com/Marco_Langbroek/status/1140279398496649216)
3/4 As mentioned, currently (June 15) some 50% of the larger, tracked debris pieces is still on orbit. This ~50% is in line with the forecast in my analysis here:ЦитироватьWhy India's ASAT Test Was Reckless (https://thediplomat.com/2019/05/why-indias-asat-test-was-reckless/)
23 ч. назад (https://twitter.com/Marco_Langbroek/status/1140279399809503233)
4/4 Some 5 pieces are currently forecast to be still on orbit by a year after the test. The last one might survive until mid 2021. Clearly, the Indian government claims were much too optimistic.
22 ч. назад (https://twitter.com/Marco_Langbroek/status/1140289875343794176)
Typo Note: "barely 30%" in tweet 2/4 should read: "barely 40%"
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/67619.png)T.S. Kelso @TSKelso (https://twitter.com/TSKelso) 4 ч. назад (https://twitter.com/TSKelso/status/1146337628620390401)
CelesTrak now has 8 more TLEs from the Indian ASAT test, bringing the total cataloged to 101 pieces (including the original). Of these, only 52 have decayed so far, 98 days after the test was conducted.
(https://img.novosti-kosmonavtiki.ru/166485.jpg)
Приложение
0 TBA - TO BE ASSIGNED
1 44377U 19006CY 19184.09044180 .00332088 20927-4 27261-2 0 9998
2 44377 92.2819 26.5602 0393171 16.3934 345.1173 15.10451724 8438
0 TBA - TO BE ASSIGNED
1 44378U 19006CZ 19183.68290755 .00366043 46759-4 11988-2 0 9992
2 44378 96.0376 83.2690 0101111 18.2054 342.2244 15.82524602 8781
0 TBA - TO BE ASSIGNED
1 44379U 19006DA 19183.66443686 .00444484 62495-4 18782-2 0 9994
2 44379 96.3105 84.8135 0135545 25.4108 335.7834 15.72593067 4850
0 TBA - TO BE ASSIGNED
1 44380U 19006DB 19183.67774402 .00186970 11632-4 74569-3 0 9996
2 44380 96.1385 83.8178 0153978 35.9492 325.2036 15.70590956 8751
0 TBA - TO BE ASSIGNED
1 44381U 19006DC 19184.06135725 .00036476 18819-6 59894-3 0 9995
2 44381 94.6243 48.3415 0883535 88.8859 281.3278 13.92425547 6978
0 TBA - TO BE ASSIGNED
1 44382U 19006DD 19183.61657627 .00074409 13366-5 83875-3 0 9991
2 44382 94.7010 55.3074 0543367 34.9175 328.6443 14.72818169 7379
0 TBA - TO BE ASSIGNED
1 44383U 19006DE 19184.12251926 .00018093 53809-6 33520-3 0 9997
2 44383 96.2022 64.7389 0934033 93.4612 277.3697 13.79485523 6845
0 TBA - TO BE ASSIGNED
1 44384U 19006DF 19184.13138820 .00646869 66166-4 77113-2 0 9997
2 44384 97.0543 78.8975 0591805 79.9515 286.7898 14.61354446 7183
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 2 мин. назад (https://twitter.com/planet4589/status/1146419378457649153)
8 more debris objects from the Indian ASAT test added to the catalog today. (Not newly existing, just hadn't been spotted earlier). 4 of them have apogees above 1000 km and are likely to last for a long time.
8 мин. назад (https://twitter.com/planet4589/status/1146420881993936896)
Updated decay plot for the Indian ASAT debris, with new objects indicated as red squares
(https://img.novosti-kosmonavtiki.ru/167439.jpg)
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 10 мин. назад (https://twitter.com/planet4589/status/1155161005078528000)
Updated orbit decay plot of the Indian antisatellite debris, at event plus 122 days
(https://img.novosti-kosmonavtiki.ru/175561.jpg)
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/29726.jpg) Joseph Remis @jremis (https://twitter.com/jremis) 28 июл. (https://twitter.com/jremis/status/1155438577838383104)
Predicted decay dates for #ASAT (https://twitter.com/hashtag/ASAT?src=hash) objects in orbit.
(https://img.novosti-kosmonavtiki.ru/175613.jpg)
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg) Jonathan McDowell Подлинная учетная запись @planet4589 (https://twitter.com/planet4589) 7 мин. назад (https://twitter.com/planet4589/status/1158548493423845376)
US tracking has just released orbit data for 15 previously undetected Indian ASAT debris objects, cataloged as 44460-44474. Six of them have apogees above 1000 km.
6 мин. назад (https://twitter.com/planet4589/status/1158548784613330946)
This sort of late cataloging is not unusual after a debris event. It can take a while to link together radar detections and spot that there is a new object, and then longer to prove it is part of a particular debris cloud.
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/29726.jpg) Joseph Remis @jremis (https://twitter.com/jremis) 8 ч. назад (https://twitter.com/jremis/status/1159072205159960581)
Predicted decay dates for #ASAT (https://twitter.com/hashtag/ASAT?src=hash) objects in orbit.
(https://img.novosti-kosmonavtiki.ru/176069.jpg)
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/67619.png) T.S. Kelso @TSKelso (https://twitter.com/TSKelso) 4 ч. назад (https://twitter.com/TSKelso/status/1164424542728675331)
CelesTrak also has 3 more TLEs for debris from the Indian ASAT test (MICROSAT-R DEB). That brings the total, so far, to 121 pieces (including the original), of which only 65 have decayed —148 days after the event: http://bit.ly/2P6KVQ5 (https://t.co/yHuEC6Ac6l)
(https://img.novosti-kosmonavtiki.ru/176218.jpg)
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg)Jonathan McDowellПодлинная учетная запись @planet4589 (https://twitter.com/planet4589) 9 мин. назад (https://twitter.com/planet4589/status/1165661884613353473)
Update on the Indian ASAT. 5 of the objects that SpaceTrack says are still in orbit appear to actually have reentered now: 44158 44191 44378 44379 44464. Another object, in the highest reported orbit, 44463, was only tracked for 3 days up to Aug 7 - maybe it was a mistake?
7 мин. назад (https://twitter.com/planet4589/status/1165662341704355841)
]Excluding those, that leaves 46 debris objects still being tracked in orbit from the ASAT test, of 121 total cataloged. Here is the decay plot (average height versus time) as of today
(https://img.novosti-kosmonavtiki.ru/176093.jpg)
5 мин. назад (https://twitter.com/planet4589/status/1165662865933643778)
38 of these Indian ASAT debris objects have apogees above 400 km, thus potentially a danger to the ISS.
Чтото верхние както уверенно снижаются а нижние - нихрена не снижаются...
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/29726.jpg)Joseph Remis @jremis (https://twitter.com/jremis) 7 ч. назад (https://twitter.com/jremis/status/1166408671322157057)
Predicted decay dates for #ASAT (https://twitter.com/hashtag/ASAT?src=hash) objects in orbit. 49 out of 122 remain in orbit.
(https://img.novosti-kosmonavtiki.ru/176283.jpg)
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg) Jonathan McDowell Подлинная учетная запись @planet4589 (https://twitter.com/planet4589) 29 сент. (https://twitter.com/planet4589/status/1178157144207704064)
Indian ASAT debris update: 43 pieces still tracked in orbit. Plot shows height (= 0.5*(apo+peri)) versus time for each tracked object. It takes time for 18SPCS to locate them all; a few more objects were added to the catalog as late as the end of August
(https://img.novosti-kosmonavtiki.ru/177135.jpg)
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/185119.png) Dr Marco Langbroek @Marco_Langbroek (https://twitter.com/Marco_Langbroek) 27 сент. (https://twitter.com/Marco_Langbroek/status/1177617849311027200)
New blog post: Half-a-year after India's ASAT test https://sattrackcam.blogspot.com/2019/09/six-months-after-indias-asat-test.html ... (https://t.co/pTOeq6eCVD)
(https://img.novosti-kosmonavtiki.ru/177058.jpg)
https://sattrackcam.blogspot.com/2019/09/six-months-after-indias-asat-test.html (https://sattrackcam.blogspot.com/2019/09/six-months-after-indias-asat-test.html)
ЦитироватьFriday, 27 September 2019
Six months after India's ASAT test
(https://img.novosti-kosmonavtiki.ru/124200.jpg) (https://1.bp.blogspot.com/-2ocjxKcM40A/XY4xtnjIecI/AAAAAAAAF3c/sXNBIdjsJfk6DLu5gp4oCFsv5-DdW9tUQCEwYBhgL/s1600/Microsat_debris_26Sep2019.jpg)
Six months ago today, on 27 March 2019 at 5:42:15 UT, India conducted its first successful Anti Satellite (ASAT) Test, under the code name Mission Shakti. I wrote an in-depth OSINT analysis of that test published in The Diplomat (https://thediplomat.com/2019/05/why-indias-asat-test-was-reckless/) in April 2019.
Part of that analysis was an assessment - also discussed in various previous posts on this blog - on how long debris from this ASAT test would stay on-orbit. Half-a-year after the test, it is time to make a tally of what is left and what is gone - and make a new estimate when the last piece will be gone.
A few more debris pieces have been catalogued by CSpOC since my last tally. As of 27 September 2019, orbits for 125 debris pieces from the ASAT test have been catalogued. Of these 125 objects, 87 (or 70%) had reentered or had likely reentered by 27 September, leaving 38 (or 30%) still on orbit.
(https://img.novosti-kosmonavtiki.ru/124297.png) (https://1.bp.blogspot.com/-TmnmSOM4A94/XY4w_tw52eI/AAAAAAAAF3E/njFY9qrX-Ccxwv6KgxcS_aJibVfPzqc0wCNcBGAsYHQ/s1600/26sept2019_52weeks_diagram.png)
click diagram to enlarge
(https://img.novosti-kosmonavtiki.ru/124251.png) (https://1.bp.blogspot.com/-i7-Qj1bY7OE/XY4w_pItaAI/AAAAAAAAF3M/C-pml_0D6LsX-ORK08IzPse6jAB_sCDtACNcBGAsYHQ/s1600/26sept2019_300weeks_diagram.png)
click diagram to enlarge
Remember that the Indian DRDO had made the claim that all debris would have reentered 45 days after the test. This is clearly not correct: of the well-tracked debris for which we have orbits (presumably there is a lot more for which we have no orbits), only 29%, i.e. barely one-third, reentered within 45 days. Over 70% did not. At 120 days after the test, only half of the catalogued population of larger debris had reentered.
(https://img.novosti-kosmonavtiki.ru/124272.png) (https://1.bp.blogspot.com/-NYBF4N_fZn0/XY4wsraTVhI/AAAAAAAAF20/9m8K5SO72mMi0sYwv2j9kqILOMj7uXitgCNcBGAsYHQ/s1600/26sept2019_52weeks_cumpercentagediagram.png)
click diagram to enlarge
(https://img.novosti-kosmonavtiki.ru/124212.png) (https://1.bp.blogspot.com/-6EmMKSPKm_k/XY4ws4A7j8I/AAAAAAAAF24/pmuk-0HNJrsp2-xcz81TK30yBVCN2z7xACNcBGAsYHQ/s1600/26sept2019_300weeks_cumpercentagediagram.png)
click diagram to enlarge
I used SatEvo to produce reentry estimates for the 38 objects still on orbit on 27 September 2019. By the end of the year, some 15 to 16 of these larger debris fragments should still remain on-orbit.
One year after the test, at the end of March 2020, about 90% of all tracked debris should have reentered. The last or the tracked debris fragments for which we have orbits, might not reenter untill mid 2024.
The current apogee altitudes of the objects on-orbit spread between 270 and 1945 km. They have now well-dispersed in RAAN too, no longer sharing the same orbital plane:
(https://img.novosti-kosmonavtiki.ru/124201.jpg) (https://1.bp.blogspot.com/-2ocjxKcM40A/XY4xtnjIecI/AAAAAAAAF3c/VasiACYz_y8Geirp-cF9J8LJVFlDwWBmwCNcBGAsYHQ/s1600/Microsat_debris_26Sep2019.jpg)
click to enlarge
[URL=https://1.bp.blogspot.com/-3eR5vBxcU8I/XY4w_ml8FrI/AAAAAAAAF3U/yRLcGHE5tLg4iD2ulFo2LxhSPbKJjiMNQCEwYBhgL/s1600/26sept2019_histogram_apogee.png](https://img.novosti-kosmonavtiki.ru/124205.png)
click to enlarge
Some 90% of the debris fragments still on-orbit have an apogee altitude above that of the ISS, meaning that they almost all have orbits that reach well into the orbital altitudes of operational satellites.
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/29726.jpg) Joseph Remis @jremis (https://twitter.com/jremis) 29 окт. (https://twitter.com/jremis/status/1189135190175694848)
Predicted decay dates for #ASAT (https://twitter.com/hashtag/ASAT?src=hash) objects in orbit. 28 out of 125 remain in orbit.
(https://img.novosti-kosmonavtiki.ru/177685.jpg)
(https://img.novosti-kosmonavtiki.ru/67516.jpg) Jonathan McDowell @planet4589 (https://twitter.com/planet4589) 4 ч. назад (https://twitter.com/planet4589/status/1190043536802140160)
Updated plot of Indian ASAT debris. Plot shows average height of debris object [= (apo+peri)/2] vs time. 28 objects are still being actively tracked. Days since event: 218
(https://img.novosti-kosmonavtiki.ru/177774.jpg)
Миссия Шакти - годовщина...
https://sattrackcam.blogspot.com/2020/03/one-year-after-indias-asat-test.html (https://sattrackcam.blogspot.com/2020/03/one-year-after-indias-asat-test.html)
ЦитироватьFriday, 27 March 2020
One year after India's ASAT test
(https://img.novosti-kosmonavtiki.ru/124234.png) (https://1.bp.blogspot.com/-FbKNl2P7lvw/Xn4OZUKgu_I/AAAAAAAAGEk/GDoWl95HeoM50KOCS2QMwL4VNH1MpK8nACNcBGAsYHQ/s1600/26March2020_decaysperweek_histo.png)
click diagram to enlarge
Today it is one year ago that India performed an ASAT test codenamed 'Mission Shakti'. The test consisted of the on-orbit destruction of the Microsat-R satellite (2019-006A), launched specifically to function as target for this test. The intercept occurred at 285 km altitude, but created debris pieces with apogee altitudes much higher than that. I have earlier published an extensive OSINT analysis of the test in The Diplomat (https://thediplomat.com/2019/05/why-indias-asat-test-was-reckless/) of 30 April 2019.
The test generated large amounts of debris. A total of 125 larger debris pieces have been tracked and catalogued by US tracking network. Note that these only concern larger pieces: most of the generated debris probably was too small to be tracked.
Over the past year I have periodically posted an update on the status of these larger debris pieces on this blog. Whereas the Indian DRDO claimed at the time (https://www.tribuneindia.com/news/archive/nation/asat-test-space-debris-to-vanish-in-45-days-drdo-749813) that all debris would have been gone 45 days after the test, the reality has been quite different: 45 days after the test, 29% (less than a third) of the larger debris pieces had reentered. It took 121 days for half of the pieces to reenter, and some 200 days before 75% of the tracked debris pieces had reentered.
One year after the test, some 114 of the tracked debris pieces have reentered according to CSpOC tracking data. And two more objects for which no decay message was published by CSpOC, 2019-006AR and EA, have reentered according to my own analysis with SatEvo, bringing the total tally of reentered larger tracked pieces to 116.
Nine, or some 7%, of the original 125 larger tracked debris pieces are still on orbit.
It concerns objects 2019-006V, AJ, AX, BD, DC, DD, DE, DM and DU (red orbits in the image below: the white orbit is that of the ISS, as a comparison). They have apogee altitudes varying from 600 to 1500 km, and perigees generally near 260 to 280 km. Six of these are expected to reenter over the next half year. And the last debris pieces may not reenter before 2022-2023.
(https://img.novosti-kosmonavtiki.ru/124196.jpg) (https://1.bp.blogspot.com/-1pagBVt7xfI/Xn4TCo9xabI/AAAAAAAAGEw/nYXbJtDvyH0o4KpU0qVkivsET1Mg2dEzQCNcBGAsYHQ/s1600/27_MAR_2020_anot.jpg)
click image to enlarge
Миссия Шакти - минул год...
Цитировать(https://img.novosti-kosmonavtiki.ru/29726.jpg) Joseph Remis @jremis (https://twitter.com/jremis) 19 мин. назад (https://twitter.com/jremis/status/1243809759528210432)
Predicted decay dates for #ASAT (https://twitter.com/hashtag/ASAT?src=hash) objects in orbit. 9 out of 125 remain in orbit.
(https://img.novosti-kosmonavtiki.ru/181344.jpg)
Миссия Шакти
Цитировать(https://img.novosti-kosmonavtiki.ru/67516.jpg) Jonathan McDowell @planet4589 (https://twitter.com/planet4589) 1 ч. назад (https://twitter.com/planet4589/status/1248479943220006912)
Five of the new objects are previously uncataloged objects from the Mar 2019 Indian antisatellite test. This raises the number of objects still in orbit from that test to 14.
(https://img.novosti-kosmonavtiki.ru/181637.jpg)