http://www.aviationweek.com/Article.aspx?id=/article-xml/AW_07_30_2012_p36-478885.xml
ЦитироватьSmallsats Growing In Utility
By Frank Morring, Jr.
Source: Aviation Week & Space Technology
(https://img.novosti-kosmonavtiki.ru/66620.jpg)
July 30, 2012
Frank Morring, Jr. Washington
Small satellites, once the realm of one-off low-budget science missions and undergraduate engineering classes, have come full circle with the growing realization among hard-pressed, high-end users that the little birds can do the big jobs, too.
The smallest of them—cubesats—are rapidly evolving into an operational commercial, scientific and military technology. Higher up the payload-weight scale, the high cost per pound of launching payloads and the growing skill of spacecraft miniaturizers are making satellites that are small enough to ride as secondary payloads attractive to a variety of customers, particularly if they can be mass-produced or produced rapidly in single units.
The launch-cost consideration may change, as the growing interest in small spacecraft attracts a new generation of small launchers designed to carry them. And the spacecraft themselves are increasingly capable, with government money flowing into the arena in search of a way to do more with less.
"Fr om where we have been 10 years ago to where we are now is a complete 180," says Roland Coelho, a member of the research staff at California Polytechnic State University's engineering school, one of the main U.S. centers for cubesat development. "In the past it's been primarily educational. . . . As we have kind of grown—the entire community worldwide over the past decade—we really have started to see some niche markets where cubesats can play a vital role. It's clearly the most evident in the government cubesat programs that we have today. The government, and particularly the U.S. government, has been the driving force in this technology because that's where all the funding is."
Government interest in small satellites is not limited to cubesats, or even to spacecraft. The U.S. Defense Advanced Research Projects Agency (Darpa) is spending $46 million to find ways to launch satellites weighing up to 100 lb. on 24-hr. notice for less than $1 million (see p. 44). And the Air Force and National Reconnaissance Office consider small satellites a way to lower risk in national security spacecraft by adding redundancy in orbit.
"Even if 20% of them failed, you'd still do your mission, so there's sort of a natural resiliency in using constellations of smaller satellites," says John Roth, whose company—Sierra Nevada Space Systems—makes small satellites for the military and others. "One of the advantages that the military recognizes also is, if we're worrying about countries taking offensive action against our satellites . . . the more satellites you have up doing the same mission, the harder it is for them to do anything to our satellites."
Building more, smaller satellites also lowers the cost of each bird through mass-production economies of scale. This fall, SpaceX is set to launch the first of 18 second-generation low-Earth-orbit narrowband satellites that Sierra Nevada is building for Orbcomm.
"They contracted with us $117 million for 18 satellites, so that's a unit cost of about $6.5 million a satellite," says Roth. "And if you look at what a typical NASA or [Defense Department] mission costs, you can't come anywhere close to that."
Compared to cubesats, however, even that is a high pricetag. With a standardized "1U form factor" measuring 10 cm (4 in.) on a side and weighing no more than 1.33 kg (3 lb.), cubesats typically cost well below $100,000 to build and launch. Coelho has seen changes in the technology first-hand, beginning in 2000 as a Cal Poly undergraduate working with cubesat pioneer Jordi Puig-Suari, and later joining the staff. Among the school's accomplishments is development of the standard cubesat deployment system—the Poly-PicoSatellite Orbital Deployer (P-POD)—and helping to advance the state of the art in cubesats to the point that they are being used to tackle serious science missions (see p. 41).
"It was a training tool for students to build a satellite within their academic career, fr om design to manufacturing and then to launch and then to on-orbit operations," says Coelho of the early days. "And it was a good way for small commercial companies to do technology demonstrations for certain components."
Now, with growing acceptance fr om users and fr om the launch-service providers who must weigh the value of carrying secondary payloads against the risk they pose to their primary missions, the ideas for using small satellites, and particularly cubesats, are piling up. One early area of U.S. Air Force interest is multi-source weather data.
"Because the cubesats are small, you can launch them in bunches and disperse them out [with] variable drag capability," says David Hinkley, a senior project leader at The Aerospace Corp. "Now you've suddenly got 10 useful satellites flying around in different positions that can take temporal data, data that changes with time. In the past they would fly one big satellite, and they would not able to be in multiple places at once."
Aerospace is experimenting with using the variable drag in low Earth orbit that cubesats get fr om deploying and retracting different combinations of cruciform solar arrays. NASA's Office of the Chief Technologist (OCT) plans to launch a constellation of eight 1.5U cubesats next summer in a project called the Edison Demonstration of Smallsat Networks. Its goal is to begin developing inter-satellite communications that could be applied to a number of different applications, including monitoring weather, ice cover in the polar regions and other Earth-surface conditions.
With its mission to push technology hard, Darpa is also working on a mission dubbed Phoenix that is aimed at recycling usable hardware fr om non-functioning satellites in geostationary (GEO) orbits by reactivating them with tiny modular "satlets" designed to perform various spacecraft functions. On July 12, the agency awarded Canada's MacDonald Dettwiler a contract worth as much as $2.1 million to begin developing systems that can revive a usable antenna on an out-of-service GEO satellite.
At the other end of the satellite service life, NASA's Marshall Space Flight Center is building on its work with NanoSail-D—a 100-sq.-meter (1,075-sq.-ft.) solar sail demonstration that deployed on Jan. 21, 2011, fr om a 3U cubesat—to develop deployable drag sails to pull obsolete smallsats out of orbit instead of adding to the space-debris problem.
Overall, Darpa plans to spend $36 million on the Phoenix project, which is peanuts by U.S. military standards. But it is big money in the smallsat world, where mass production and standard forms continue to cut hardware costs dramatically. A San Francisco-based company—Pumpkin Inc.—is selling cubesat kits starting at $7,500 that can be customized depending on the capabilities needed. To date, more than a dozen have been launched, according to Andrew Kalman, the company's president and chief technology officer, who says Pumpkin is following the Apple Inc. model.
"We want to make sure that cubesats really are one of the foremost places wh ere you can leverage the continuing advance of technology," says Kalman. "To do that you need to recognize that you are not in the driver's seat when it comes to the technology you want to put up there. Rather, you need to be leveraging other markets which are in the driver's seat, which in this case is essentially the consumer electronics field, and take advantage of those technologies."
When Orbital Sciences Corp. launches its first Antares rocket from Wallops Island, Va., later this summer, it will be carrying three 1U cubesats that take the consumer-electronics approach to spacecraft to new heights. Wedged into one of them will be a standard Android smartphone, with a bunch of extra batteries, in a test of whether the open-architecture electronics and commercial hardware can survive in space.
"If the platform is open, if the operating system is open, well then, almost anybody could write an app that could do something that may be beneficial to spaceflight, so you can tap into that larger community of app writers," says Bruce Yost a project manager at Ames Research Center, wh ere NASA's smallsat work is headquartered. "It kind of changes a lot of things that you do in aerospace."
Another "Phonesat" version carries the innards but not the case of the Android. The work, spearheaded at Ames with funding from OCT, is not lim ited to smartphone software, but includes such hardware possibilities as removing the weights from the phones' "vibrate" mode and using the motors as tiny reaction wheels, says Yost.
Despite the possibilities, some areas of smallsat technology still need work, particularly in the cubesat arena, wh ere communications is a particular problem. The Phonesats set to fly on the first Antares mission will test the smartphone computing for spaceflight apps, but the radio will be switched off because it would not work in space. Instead, cubesats rely on ham-radio frequencies for links with the ground, and that lim its both contact time and bandwidth.
To tackle those problems, experts at the European Space Agency are developing an international ground-station network called the Global Educational Network for Satellite Operations (Genso), which is basically a set of software and protocols that will give cubesat operators a worldwide network of ground stations (see map).
At Ames and California's San Jose State University, preparations are underway to begin operating the Technical and Educational Satellite (TechEdSat), which was launched July 20 on Japan's third H-II Transfer Vehicle. Based on a Pumpkin cubesat-kit structure, the 1U cubesat will become the first U.S. spacecraft to be deployed from the International Space Station (see p. 44)..
Inside are three radios—a Stensat Radio Beacon transmitting with 1 watt of power at 437 MHz, and modems designed for Orbcomm and Iridium low-Earth-orbit communications satellites. Because of licensing issues, only the beacon will be operating during flight, but San Jose State students have already demonstrated that the Iridium and Orbcomm hardware can be integrated into a 1U cubesat, and powered with batteries approved for safety by NASA's ISS program office at Johnson Space Center.
Communications is one of three areas in smallsat technology that will be flight-tested with new funding from NASA. The agency's chief technologist received a heavy response to its request for proposals in communications, proximity operations and propulsion, and expects to make selections for the 2-3-year effort before the end of August.
Sensors, software and thrusters for proximity operations could enable tiny inspectors to fly safely around larger spacecraft—including the ISS—to routinely document their physical condition and pinpoint debris damage or mechanical problems soon after they occur. Some of the software work is already underway inside the station with the Synchronized Position Hold, Engage & Reorient Experimental Satellites (Spheres) control-software testbeds: three volleyball-sized balls designed to give programmers a quick check of their algorithms in microgravity (AW&ST June 25, p. 44).
Because of the size and safety lim itations that launch-service providers impose on secondary payloads, propulsion has been a particularly difficult problem for small-spacecraft designers, with the difficulty increasing as the size decreases. The Swedish Space Corp.'s NanoSpace unit has used micro-electromechanical systems (MEMS) fabrication technology to develop miniature thrusters that have been tested in orbit on the Prisma satellite testbeds (AW&ST May 7, p. 21).
At least one proposal in the OCT competition involves an update on the colloid thrusters tested in the 1960s and '70s and dropped in favor of ion propulsion because they just did not work as well. But now, says Paulo Lozano, an associate professor of aeronautics and astronautics at the Massachusetts Institute of Technology, advances in propellant chemistry and MEMS production is enabling development of "electrospray thrusters" that emit ions when subjected to an electric charge, instead of the heavier droplets emitted in the older technology. Using coulomb liquids—electrically conductive liquid salts composed of molecular ions—wicked by capillary action through a plate of tiny emitters produced with proprietary MEMS techniques—the thrusters produce a spray of ions when an electric charge is passed across them. The approach eliminates the need for pumps, valves and other moving parts, and generates specific impulses of 1,500-5,000 sec., depending on the propellant.
"It basically works like a candle," Lozano says, noting that the thrusters operated with 80% efficiency. "The 'wax' of the candle is the propellant, and the 'wick' is just the transport medium, and the 'flame' is the thrusting mechanism. So it's very similar, except that we evaporate ions, and in the process of evaporating the ions we also accelerate them to very high speeds."
In the longer term, engineers are studying ways to combine spacecraft so a small satellite can disperse cubesats after launch and then serve as a "mother-ship" communications hub. NASA's Nanosail-D flew to orbit in a P-POD inside the agency's Fast, Affordable, Science and Technology Satellite (Fastsat) developed by Dynetics as a way to get payloads to orbit on a freeflier in fewer than two years after authority to proceed. With the solar-sail demonstration, it also showed that a larger spacecraft can safely jettison a smaller one.
Now the Huntsville, Ala.-based company is looking for new uses for the Fastsat capability.
"The Communications Relay for the Arctic Domain is the next generation of that concept, wh ere we would actually be a mother ship and deploy multiple cubesats to fly in formation with Fastsat and provide a larger coverage ring," says Mike Graves, manager of the Space Vehicles Department at Dynetics. "So you have the host mother ship in the middle and then you've got in formation flight maybe four 3U cubesats, each one of those having its own localized communications capability and sensors, and then you send it back to the mother ship for the large data bandwidth to the ground."
http://www.parabolicarc.com/2012/08/09/nasa-selects-3-smallsat-demo-missions/#more-41819
ЦитироватьNASA Selects 3 Smallsat Demo Missions
Posted by Doug Messier
on August 9, 2012, at 6:22 pm
MOFFETT FIELD, Calif. (NASA PR) – NASA has chosen three teams to advance the state of the art for small spacecraft in the areas of communications, formation flying and docking systems. The cutting-edge space technology flights are expected to take place in 2014 and 2015.
All sel ected missions will employ nanosatellites conforming to the CubeSat standard. CubeSats are composed of four-inch, cube-shaped units with each having a volume of about one quart and a weight of approximately three pounds. CubeSats can be joined to create multiple-unit spacecraft. They readily can be accommodated as secondary payloads or rideshares on a number of space launch vehicles.
"NASA's Small Spacecraft Technology Program is structured to advance the capabilities and technologies associated with small, low cost space missions to enhance NASA's ability to conduct more with less," said Michael Gazarik, director of NASA's Space Technology Program at Headquarters in Washington. "These flights validate new space technologies and capabilities prior to infusion into NASA science and exploration applications and missions."
The three missions selected for flight demonstration are:
"Integrated Solar Array and Reflectarray Antenna (ISARA) for High Bandwidth CubeSat," Richard Hodges, NASA Jet Propulsion Laboratory, Pasadena, Calif., partnering with Pumpkin Inc. of San Francisco. ISARA will demonstrate a radio communication system that dramatically boosts the amount of data that the small satellite can transmit by using the back of its solar array as a reflector for the antenna. This three-unit CubeSat will be funded at approximately $5.5 million with launch expected in two years.
"Integrated Optical Communications and Proximity Sensors for Cubesats," Siegfried Janson, Aerospace Corporation of El Segundo, Calif. This pair of 1.5-unit CubeSats will demonstrate a laser communication system for sending large amounts of information fr om a satellite to Earth and also demonstrate low-cost radar and optical sensors for helping small spacecraft maneuver near each other. The mission is expected to take two years and $3.6 million to develop and operate.
"Proximity Operations Nano-Satellite Flight Demonstration," Charles MacGillivray, Tyvak Nano-Satellite Systems LLC of Orange, Calif. Two three-unit CubeSats will demonstrate rendezvous and mechanical docking of small spacecraft in orbit. This project is expected to take three years and approximately $13.5 million in funding to develop, launch and operate. Partners on the project include Applied Defense Solutions Inc. of Columbia, Md., 406 Aerospace LLC of Bozeman, Mont., and California Polytechnic State University of San Luis Obispo.
NASA's Small Spacecraft Technology Program is designed to identify and support the development of new subsystem technologies to enhance or expand the capabilities of small spacecraft. The program also supports flight demonstrations of new small spacecraft technologies, capabilities and applications. In addition, it supports use of small spacecraft as platforms to test and demonstrate technologies and capabilities that might have applications in spacecraft and systems of any size.
NASA's Space Technology Program directs the Small Spacecraft Technology Program, which is managed by NASA's Ames Research Center in Moffett Field, Calif. NASA's Space Technology Program is innovating, developing, testing and flying hardware for use in NASA's future science and exploration missions. NASA's technology investments provide cutting-edge solutions for our nation's future.
For more information about NASA's Space Technology Program and Small Spacecraft Technology Program, visit:
http://www.nasa.gov/oct
http://www.nasaspaceflight.com/2012/08/usaf-kestrel-eye-1-spacecraft-falcon-9-2013/
ЦитироватьUSAF Kestrel Eye 1 spacecraft to ride on Falcon 9 in 2013
August 9th, 2012 by Chris Bergin
(https://img.novosti-kosmonavtiki.ru/26377.jpg)
The US Air Force's Kestrel Eye 1 Tactical Imaging Spacecraft spacecraft will head uphill in 2013 as a secondary payload on a commercial Falcon 9 launch. Technically classed as a nanosatellite, the spacecraft will be hosted on the Spaceflight Secondary Payload System (SSPS), as part of SpaceX and Spaceflight's Launch Services Agreement (LSA).
Kestrel Hitching a Ride on Falcon 9:
Thursday's announcement follows contract signing between the USAF's Space Development and Test Directorate and Spaceflight to evaluate commercial launch options for, and potentially conduct commercial launch and orbit insertion operations of, the STP Satellite-3 (STPSat-3) and Kestrel Eye Tactical Imaging Spacecraft (Kestrel Eye) spacecraft.
(https://img.novosti-kosmonavtiki.ru/26378.jpg)
The LSA between SpaceX and Spaceflight ranges back to when the two companies first signed a memorandum of understanding in 2010 to manifest secondary payloads on upcoming Falcon 9 flights. The LSA framework allows Spaceflight to manifest payloads on any Falcon vehicle designated by SpaceX as having excess capacity.
After the conclusion of the feasibility study, the Space Development and Test Directorate exercised a contract option to procure commercial launch services for the Kestrel Eye 1 spacecraft.
"We are extremely honored that the USAF Space Development and Test Directorate has sel ected Spaceflight for this watershed moment in the evolution of secondary payload acceptance," said Jason Andrews, President and CEO of Spaceflight Inc.
(https://img.novosti-kosmonavtiki.ru/26379.jpg)(https://img.novosti-kosmonavtiki.ru/26380.jpg)
"It's another major step towards bringing the more affordable benefits of small, agile, commercial space providers together with Government customers to achieve the right solution for the mission."
Kestrel Eye, as the name suggests, is a surveillance spacecraft, equipped with a 10" telescope and camera, capable of providing images – in the jpeg format – to allied troops on the ground.
To meet the Kestrel Eye 1 mission requirements, Spaceflight will use its Spaceflight Secondary Payload System (SSPS) – a standardized integrated system for the transport of small payloads and CubeSats to orbit.
The SSPS uses a custom ring, manufactured by Moog CSA Engineering, and a series of shelves and adapters to accommodate secondary payloads on their ride to space. The ring is similar to the Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) ring.
Spaceflight will develop a custom shelf to carry the Kestrel Eye spacecraft in a standard vertical launch orientation.
The SSPS also features a standalone avionics and power system dedicated to monitoring the secondary payloads, initiating their deployment and relaying video and telemetry of their separation to a ground station.
It is not yet clear which Falcon 9 mission will host Kestrel Eye 1, with SpaceX currently manifesting three commercial missions in 2013 – two from Cape Canaveral, and third fr om Vandenberg.
Click here for SpaceX Articles: http://www.nasaspaceflight.com/tag/spacex/
Spaceflight has been working with its sister company, Andrews Space (Andrews), since 2010 to develop the SSPS and SHERPA family to meet its business requirements. Andrews will fabricate the SSPS and SHERPA at its recently expanded facility in Tukwila, WA.
"This is a historic moment for the commercial rideshare market," Mr Andrews added. "Our goal is to demonstrate that the US government can save significant money by using commercial launch services for small and secondary payloads."
The other system – the SHERPA in-space tug – is dedicated to hosting and deploying small and secondary payloads via a three-axis stabilized platform with over 400 meters per second of on-orbit maneuvering capability, can also provide over 100 Watts of electrical lifeblood to hosted or secondary payloads and can be upgraded to meet specific customer power, propulsion and pointing requirements.
Spaceflight's first demonstration mission of SHERPA will occur in early 2014, with the first commercial mission scheduled for late 2014. Both missions will be carried to sun synchronous orbits on SpaceX Falcon 9 rockets.
Цитироватьhttp://www.nasaspaceflight.com/2012/08/usaf-kestrel-eye-1-spacecraft-falcon-9-2013/Цитировать(https://img.novosti-kosmonavtiki.ru/26378.jpg)
Знакомая картинка... Где-то я её видел уже...
http://www.spacenews.com/launch/120814-rides-new-cubesats.html
ЦитироватьTue, 14 August, 2012
NASA Offering Rides to New Crop of Cubesats
By Dan Leone
WASHINGTON — NASA's CubeSat Launch Initiative is seeking a fresh crop of nanosatellites to hitch a ride on previously planned launches between 2013 and 2016, the agency said Aug. 13. While no funding is being provided for development of the spacecraft themselves, NASA will fly the sel ected cubesats as auxiliary payloads on upcoming U.S. government launches.
Six of the 64 cubesats NASA has sel ected under the program since mid-2010 reached orbit last October as secondary payloads on the United Launch Alliance Delta 2 rocket that launched the Suomi NPP climate and weather satellite. Three other CubeSat Launch Initiative spacecraft were lost in the March 2011 Taurus XL launch failure that destroyed NASA's Glory climate-monitoring satellite.
Four more cubesats are slated to ride along with NROL-36, a classified U.S. National Reconaissance Office (NRO) mission currently expected to launch Sept. 6 fr om Vandenberg Air Force Base, Calif., aboard a United Launch Alliance Atlas 5 rocket.
The remaining 51 already-selected cubesats have either been manifested as secondary payloads on upcoming launches or are still waiting to be matched up with rides between now and 2014. NASA spokesman Joshua Buck said 10 of those cubesats have been assigned to Space Exploration Technologies Corp. (SpaceX)'s third cargo-delivery flight to the international space station. Eight more have been assigned to the Orbital Sciences Corp. Minotaur 1 rocket launching fr om Wallops Island, Va., next year on behalf of the Pentagon's Operational Responsive Space Office. Other upcoming cubesat launch opportunites, Buck said, include NROL-39 and additional SpaceX cargo-delivery flights.
NASA, meanwhile, is giving applicants interested in joining the launch queue until Nov. 12 to submit proposals. The agency expects to make its selections by the end of January. "Selection does not guarantee a launch opportunity," NASA said in its Aug. 13 announcement. "The selected spacecraft will be eligible for flight after final negotiations when a launch opportunity arises."
Cubesats are a standard class of research satellites that measure 10 centimeters on each side and weigh up to 1.33 kilograms.
NASA's CubeSat Launch Initiative is open to single-unit cubesats as well as larger spacecraft built fr om as many as six standard cubesats and weighing no more than 14 kilograms (The final weight lim it for six-unit cubesats, NASA says, is still to be determined).
NASA also said it is only looking for projects relevant to the agency's goals. "Proposed CubeSat investigations must be consistent with NASA's Strategic Plan and the NASA education vision and goals," the announcement states. "The research must address aspects of science, exploration, technology development, education or operations."
NASA's announcement coincided with the start of the 26th Annual Conference on Small Satellites, hosted by the American Institute of Aeronautics and Astronautics at Utah State University in Logan, Utah.
Цитироватьinstml пишет:
July 30, 2012 - NROL-36 Auxiliary Payloads Release
http://www.nro.gov/news/press/2012/2012-09.pdf
(http://s50.radikal.ru/i127/1208/66/ccffb65e3b70.jpg)
(http://s018.radikal.ru/i508/1208/94/0f90029c67a2.jpg)
http://www.aviationweek.com/Article.aspx?id=/article-xml/AW_08_20_2012_p31-486488.xml&p=1
ЦитироватьSmallsats Gaining Capability For Government Jobs
By Frank Morring, Jr.
Source: Aviation Week & Space Technology
(http://www.aviationweek.com/media/images/fullsize/Space/Miscellaneous/CubesatMotorsAndDispenser-FrankMorringJr.jpg)
August 20, 2012
Frank Morring, Jr. Logan, Utah
Tight budgets and small satellites are turning out to be an attractive mix, driving industrial and academic efforts to make tiny spacecraft more attractive to customers with deeper pockets than the penurious graduate students and innovative professors who pioneered the move down the size and mass scales.
Presentations at the American Institute of Aeronautics and Astronautics/Utah State University Conference on Small Satellites here show that entrepreneurs and established companies are starting to address the limitations posed by the cubesat standard to drive more capability into the 10 X 10 X 10-cm (3.9 X 3.9 X 3.9-in.) boxes originally developed as teaching tools for engineering students. And cubesats are growing beyond the three-unit, or U, limit imposed by the Poly-PicoSatellite Orbital Deployer (P-POD) dispenser they typically ride to orbit.
"The idea of 6U gives you a little more room, a little more payload space, and a little bit more room for avionics and things like that," says James P. Marshall, director of business development at the Space Dynamics Laboratory here, which has developed operational cubesats and other small spacecraft and boasts what may be the only cubesat qualification lab in the world. "I've always guessed that we would all find the cubesat form-factor to be too constraining, and that we would all miniaturize a bunch of stuff and then get to the point of diminishing returns," Marshall says.
Among the hardware on display here was a 6U dispenser under development by Planetary Systems of Silver Springs, Md., "in collaboration" with the Pentagon's Office of Responsive Space (ORS), according to company founder Walter Holemans. The ORS interest in cubesats as a way to meet its military mission is one of the factors shaping the direction the industry is taking, and for the second year in a row the organization held a classified workshop to discuss its requirements with industry representatives who are cleared to learn them and potentially able to meet them.
While the largest aerospace companies were represented here, some of the most promising work was presented by small startups such as Planetary Systems, which is building on its niche in mechanical separation mechanisms with the cubesat-dispenser work. Vulcan Wireless Inc. of Carlsbad, Calif., displayed a family of software-defined radios built to fit into the cubesat form that can meet some military communications requirements.
"The small satellites are starting to get more capability, so the military's starting to look at these platforms as a kind of stop-gap measure, low-cost, rapid-deployment," says Kevin Lynaugh, president and CEO of Vulcan. "So you need to start looking into more sophisticated communications that's more applicable to military solutions and, to some extent, commercial. And those waveforms are quite a bit more sophisticated than ham radio analog modulation."
Most cubesats flying today use amateur-radio frequencies to communicate with the ground, a simple approach in keeping with the low-cost origins of the satellite class. But just as military applications may require larger buses to accommodate optical and other specialized payloads, they also require higher data rates and encryption capability unavailable in the ham frequencies.
Potential military applications for cubesat-based spacecraft include inexpensive low-Earth-orbit communications with ground troops in mountainous or urban terrain where signals fr om geostationary orbits may be blocked.
On the civil side, NASA is pushing smallsat technology for low-cost science missions. The agency's Office of the Chief Technologist (OCT), which has funds to push the readiness levels of enabling technologies without a specific mission in mind, has just announced three space-based experiments employing cubesats to demonstrate advanced communications and control techniques.
The company receiving the largest share of the $22.6 million in OCT funding is a spin-off from the engineering school at California Polytechnic State University in San Luis Obispo, an early academic developer of cubesats. Tyvak Nano-Satellite Systems of Orange, Calif., will use two 3U cubesats in a rendezvous-and-docking experiment expected to fly in 2015. Working with Tyvak on the $13.5 million Proximity Operations Nano-Satellite Flight Demonstration project will be Applied Defense Solutions Inc. of Columbia, Md.; and 406 Aerospace of Bozeman, Mont.
Also funded by the OCT through NASA's Small Spacecraft Technology Program at Ames Research Center will be a Jet Propulsion Laboratory experiment—the integrated Solar Array and Reflectarray Antenna (Isara) for High Bandwidth CubeSat—that uses the back of a cubesat solar array as an antenna reflector to increase radio bandwidth for data communications. Richard Hodges of JPL, in partnership with Pumpkin Inc. of San Francisco, will receive about $5.5 million to launch the 3U cubesat in two years. The Aerospace Corp. will receive $3.6 million for its Integrated Optical Communications and Proximity Sensors for Cubesats experiment, a pair of 1.5U cubesats designed to demonstrate laser communications from space to Earth, as well as inexpensive radar and optical sensors for spacecraft-proximity operations.
Another hurdle for cubesat-based spacecraft is propulsion. Small satellites are typically launched as secondary payloads by launch service providers that are uncomfortable with the potential risk of extra propulsion systems. Several exhibits here featured high-specific-impulse electric propulsion systems, including variations on the electrospray thrusters engineers at the Massachusetts Institute of Technology are fabricating with micro-electromechanical systems (MEMS) techniques (AW&ST July 30, p. 36).
An alternative presented at the smallsat conference—and test-fired on an abandoned runway at the small local airport—uses additive manufacturing (AM) to create a hybrid engine that literally uses itself as fuel to generate higher thrust than the electric systems.
Those systems require "long burn times to produce significant delta V," says Matthew Dushku, head of the Experiment Propulsion Lab, a small startup based here. "That means it's going to take longer to [reach] your desired orbit, and it's going to consume portions of useful mission life."
Dushku and his business partner, Paul Mueller, have worked with Planetary Sciences to develop an AM motor to drive a 6U cubesat built with the same 3-D printing process. Their motor and the satellite shell are produced by race-car parts house CRP USA of Mooresville, N.C., using Windform XT 2.0, a picocarbon-reinforced nylon material that can be laid up in layers as a powder and hardened with a laser scanner.
The motor essentially consumes itself as it burns, igniting in the presence of nitrous oxide housed in a tank space that surrounds a cylinder of the carbon-reinforced nylon that burns from the inside out. The motor configuration can only be made using the additive-manufacturing technique, which offers more flexibility than reductive machining, Dushku says.
To produce the motors, CRP uses a computer-aided design (CAD) file containing the motor's shape, and electronically divides it into layers for the 3-D printing. Space Exploration Technologies Corp. (SpaceX) uses the same technique to manufacture tiny impellers and other parts for its Merlin rocket engines from titanium powder, according to a SpaceX spokesman.
Dushku says the AM motors, which operate with a tank pressure of 700 psi, have been pressurized to 2,200 psi with water before failing. That margin, the inert hybrid fuel and the high temperature needed to decompose nitrous oxide into nitrogen and oxygen should reassure launch service providers with safety concerns, he says.
In their runway demonstration, Dushku and Mueller used a little of the nitrous oxide in the motor tank to fire cold-gas attitude-control thrusters to rotate the 6U spacecraft shell, and then they hot-fired the motor for 5 sec. Ultimately, they hope to produce a small AM spacecraft that can generate a delta V of 780 meters per sec. with a 60-sec. burn time.
"We can get to wh ere we want to be very, very quickly," Dushku says.
http://www.aviationweek.com/Article.aspx?id=/article-xml/AW_08_27_2012_p26-488720.xml
ЦитироватьArmy Eyes Ambitious, Cheap Satellites And Launchers
By Amy Butler
Source: Aviation Week & Space Technology
(http://www.aviationweek.com/media/images/fullsize/Defense/Satellites/nanosatellites_U.S.Army.jpg)
August 27, 2012
Amy Butler Huntsville, Ala.
The U.S. Army is making headway with plans to demonstrate the utility of nanosatellites and small, low-cost, mobile launchers to provide direct support to deployed forces. Such assets would bypass the traditional data processing and dissemination system located in the U.S.
Though the Army's budget for space systems pales in comparison to the Air Force's multibillion-dollar annual satellite and launcher procurement request, the former's small demonstration project could spark a much-needed roles-and-missions discussion about which service is best suited to provide tactical spaceborne capabilities for soldiers abroad. This focus by the Army on the utility of small satellites comes as the Air Force is pushing to close its Operationally Responsive Space office, which was designed to find ways to reduce cycle time for spacecraft, including an emphasis on smaller buses.
While the Army is aggressively pursuing a plan to showcase these tactical capabilities starting next year, the Air Force is taking a longer view of infusing small satellites into its architecture by studying ways to augment the traditional satellites now 23,000 mi. up in geosynchronous orbit with smaller, more agile systems in lower orbits.
If the Army's plan prevails, the Pentagon could take an approach similar to that used for tactical intelligence, surveillance and reconnaissance (ISR) aircraft in parsing out responsibilities between the two services, says Brig. Gen. Timothy Coffin, deputy commander for operations at the Army Space and Missile Defense Command here.
One way to divide the workload would be to allocate responsibility to the Air Force for larger constellations to serve the "global community," Coffin suggests. The Army, by contrast, could step in and handle special-mission tactical requirements, which will often be on low-orbit satellites with a short life cycle. This model, he says, is akin to the way ISR responsibilities are apportioned, with the Air Force providing much of the strategic collection services from its fleets and relaying data back to massive ground station infrastructures for processing, while the Army handles more tactical requirements, with products going straight to soldiers on the ground.
The Pentagon is providing low-level funding for three Army advanced-concept technology demonstration initiatives: Kestrel Eye, a 15-kg, (33-lb.) 1-meter resolution electro-optical imaging nanosatellite; Snap, a beyond-line-of-sight communications satellite; and the Soldier-Warfighter Operationally Responsive Deployer for Space (Swords), a low-cost, mobile launcher capable of lofting a 25-kg payload 466 mi. into orbit.
Each is designed to maximize use of existing commercial parts and suppliers, avoiding costly unique design requirements. Kestral Eye is already built and will be launched within the next year, as will the Snap spacecraft, Coffin says. The total cost of building Kestrel Eye, which employs a legacy star-tracker payload, is about $1.5 million, assuming production of 10 units per year.
But, the Army's quest for low-cost, responsive space support cannot be realized without inexpensive launch. Swords is designed to address that. In this program, the Army hopes to reduce the price to $1.8 million per launch, including range cost, by making use of commercial grade materials, not aerospace-grade components. And, the design will employ a Tridyne pressure-fed engine, bypassing the need for a turbopump. The concept calls for a "ship-and-shoot" capability that could operate from nearly anywhere with a concrete slab, and the mobile launcher is designed to be transportable by a C-130 cargo hauler.
Ideally, the Army would like a small arsenal of these satellites and launchers in the event of a pop-up crisis, such as the Libya operation in 2011, or an outage of an existing satellite in orbit.
In years past, the Army eschewed such concepts because the price of entry to space was high; but a reduced price could allow for the service to view satellites in low Earth orbit much like an extension of their tactical unmanned aircraft fleet, which can relay communications or collect intelligence.
Meanwhile, the Air Force has proposed closing its Operationally Responsive Space (ORS) office, which was formed at the behest of a Congress eager to prompt the service to develop smaller satellites and launchers on significantly reduced timelines and cost. Lawmakers are now discussing the proposal in the fiscal 2013 budget. Lt. Gen. John Hyten, vice chief of Air Force Space Command, says the service has infused the precepts of ORS into its satellite program offices, eliminating the need for a separate organization to champion them. "There will be a role for smaller satellites" that can be launched more quickly, he tells Aviation Week during an interview here. Procurement mishaps in developing such constellations as the Lockheed Martin Advanced Extremely High Frequency (AEHF) protected satcom system and Space-Based Infrared System (Sbirs) ballistic missile detector have given the service a "black eye," he says. "We have to prove ourselves in the programs we have" before earning the credibility to move forward with major new concepts.
In the meantime, however, the Air Force is studying how to implement a "disaggregation" strategy for its constellations, a concept that calls for spreading resources to reduce the reliance on a few high-value satellites in a constellation. This is useful in the event of an attack on space assets—kinetic or otherwise—and would also act as insurance against an in-orbit malfunction.
The nearest-term constellation suitable for disaggregation is likely the Milstar/AEHF protected communications system. The systems onboard the AEHF satellites now being lofted 23,000 mi. into geosynchronous orbit are all designed to the highest standards of surviving the fallout of a nuclear explosion. Hyten notes that special operators are "carrying the nuclear survivability requirement" as they use large antennas to tap into the system (owing to the high satellite altitude) for communications in the Middle East, for example. If smaller satellites suitable for covert communications were lofted into a lower orbit, these soldiers could carry smaller radios and still achieve the service they need.
"AEHF [satellites] don't have to be as big or as complicated as they are today," Hyten says. Through a disaggregation strategy, nuclear-hardened, command-and-control payloads could still reside on buses in geosynchronous orbit, while more tactical, augmenting payloads could orbit independently, he says.
Disaggregation is also being eyed for other satellite communications constellations as well as for the missile-warning system now in orbit. The Air Force is already committed to buying six AEHF and Sbirs satellites, so decisions on shifting to a new constellation are not needed immediately. Most likely, these decisions will be made in about two years, when the Pentagon assembles the Fiscal 2016 budget.
Hyten also notes that disaggregation could be employed to field some navigation payloads to reduce the instances of reduced GPS signals for soldiers in large cities or mountainous regions, areas that lack a line of sight to four GPS satellites simultaneously.
http://www.aviationweek.com/Article.aspx?id=/article-xml/AW_08_27_2012_p20-487486.xml&p=1
ЦитироватьSmallsats Provide Another New Space Market
By Frank Morring, Jr.
Source: Aviation Week & Space Technology
August 27, 2012
Creating an off-world economy in low Earth orbit is one of the goals of U.S. space policy. After a week at the 26th AIAA/Utah State University Conference on Small Satellites, it is clear that there is more to it than funding commercial vehicles to take astronauts to the International Space Station (ISS). The enthusiastic young engineers at the conference cutting their teeth on tiny cubesats have already made their presence felt in space with the increasingly sophisticated spacecraft they have invented.
The innovation that goes into stuffing all the elements of spacecraft buses and scientific payloads into a few cubes 10 cm (3.9 in.) on a side, and the willingness to take risks to give their handiwork a spaceflight checkout, is right in line with the New Space philosophy rooted in Mojave and Hawthorne, Calif., and in garages around the country. An early glimmer of the potential symbiosis between the human-spaceflight enterprises such as SpaceX and the cubesat community came at a workshop on getting cubesats to orbit.
Joseph Carroll of Tether Applications Inc. told a room full of cubesat developers that the regular flights to the ISS envisioned for Orbital Sciences Corp.'s Cygnus and particularly the flight-tested SpaceX Dragon (see photo) are perfect for launching their tiny birds.
"The goal is to look beyond what makes secondary payload launches possible to what makes them attractive," says Carroll, an experienced engineer who launched experimental secondary payloads on Delta II rockets carrying GPS satellites to orbit in the 1990s. On one of those missions, McDonnell Douglas was able to manage a delay in payload delivery by swapping the upper stage that had been modified to accommodate it with the next one in the flight sequence. For the same reason, relatively frequent launches on commercial cargo vehicles would give flexibility to cubesat launching, he says, a real advantage when the spacecraft suppliers are students or startups.
The commercial station-cargo carriers have the added advantage of being U.S.-owned, which eases International Traffic in Arms Regulations and other export control issues presented by non-U.S. launchers such as Russia's Dnepr. Multiple launches by the same operators also provide a stable company policy on accepting secondary payloads. And since NASA and the Pentagon are showing more interest in small satellites, the government customers actually make it less expensive to carry secondaries (AW&ST Aug. 20, p. 31).
"Most commercial launches are insured, and most government launches are not, so that kind of pushes you toward government launches," Carroll says, explaining that secondaries to commercial payloads will find that the insurance on the primary adds cost to launching their payloads as well. "This may not fit the ideology of New Space being fully commercial, but . . . you may find that you're back in the world of government payloads."
Carroll cites the example of NASA's old Get Away Special (GAS) program as evidence that government launches can support secondary payloads. There were 127 secondary payloads launched fr om GAS canisters in the space shuttle payload bay, he says, and the program was pitched toward the same "novice" community that flies cubesats. That they flew on a human spacecraft suggests the current restrictions on cubesat propulsion and electronic interference can be surmounted by applying the GAS lessons.
SpaceX plans to fly an Orbcomm 2 smallsat on its next ISS resupply mission, after pulling it from its first flight to the station because of NASA safety concerns. NASA is flying its small Phonesat experiment as a secondary payload on Orbital's Antares station-resupply rocket. Those precedents can lead to regular cubesat rides to orbit.
NASA already has programs to launch cubesats as secondary payloads on its scheduled missions, as does the Pentagon. In February, the civilian space agency picked 33 more small satellites to fly under its Educational Launch of Nanosatellites program, and this month issued another call for proposals for launches in 2013-16.
Added to the U.S. National Laboratory Facility on the ISS, there are a lot of free rides to space for small scientific payloads, and secondary payloads are another source of government funds for launch service providers. There is increasing commercial interest in small satellites—ATK recently expanded its line of smallsats downward in scale—so the launch market is likely to grow.
But Carroll warns that there are some risks. Of particular concern is the space-debris issue. Most current cubesats are short-lived, uncontrolled and right at the lower size lim it of what can be tracked from the ground.
"The real solution to my mind is to launch on Dragon but attach to the Falcon second stage," Carroll says. "After [main engine cutoff], the Dragon goes its separate way, and the Falcon is available for use" to place secondary payloads in safe orbits, using the stage's excess capacity.
ЦитироватьCNews.ru: Главные новости
16.03.2012, 15:42:58
________________________________________
Рой одноразовых спутников передаст снимки с космоса на смартфон
Оборонное научное агентство DARPA начинает разработку спутниковых систем, которые смогут отправлять изображения непосредственно на терминалы солдат.
Современные спутники не способны справиться с такой задачей, поскольку зачастую находятся на неподходящих орбитах, к тому же для получения информации с орбиты солдатам сегодня требуется сложное оборудование, требующее предварительного развертывания.
Небольшие спутники предоставят солдатам прямой доступ к снимкам с орбиты
В рамках программы DARPA под названием SeeMe (Space Enabled Effects for Military Engagements) будет создан рой недорогих одноразовых спутников, которые смогут отправлять изображения на портативные устройства вроде смартфона или планшетного компьютера.
Развернутая система SeeMe будет использовать две дюжины небольших спутников стоимостью 500 тыс. долл. каждый. Спутники будут расположены на очень низкой околоземной орбите, при этом каждый спутник будет проходить над интересующим военных регионом планеты раз в 90 минут в течение 2-3 месяцев, после чего сгорит в атмосфере. Таким образом, весь рой SeeMe обеспечит практически непрерывное наблюдение за определенной точкой планеты и не засорит околоземное пространство.
Рой спутников SeeMe заполнит пробел между традиционными высокоорбитальными мощными дорогими спутниками и беспилотными и пилотируемыми самолетами-разведчиками. В отличие от БПЛА, SeeMe будут неуязвимы для ПВО, охватывать намного больший регион и не потребуют дозаправки и обслуживания. Для запуска спутников, возможно, будет использоваться самолетная система ALASA, предназначенная для вывода в космос небольшой полезной нагрузки весом около 100 кг.
http://www.cnews.ru/news/top/print.shtml?2012/03/16/481824
Ужас летящий на крыльях ночи
Старому такое нравится :D
Они забыли отметить, что такая система планируется не введеной в эксплуатацию :) Т.е сейчас они ее отрабатывать будут. И если поймут, что все хорошо и она решает все задачи, то просто на боевое дежурство поставят пару МБР с грузом таких вот аппаратиков на борту. Которые в случае военного конфликта стартуют и выводят этот рой на орбиту. Ну и через сутки уже 2-3 месяца работающая система в распоряжении военных.
Дешево и сердито. :) Не надо поддерживать постоянно функционирующей систему, потому что развернуть ее - дело 1-2 пусков.
Цитироватьпару МБР с грузом таких вот аппаратиков на борту. Которые в случае военного конфликта стартуют и выводят этот рой на орбиту.
А как вы отличите пуск таких МБР от боевых?
http://www.parabolicarc.com/2012/10/11/andrews-space-to-manufacture-dutch-cubesat-dispenser/
ЦитироватьAndrews Space to Manufacture Dutch CubeSat Dispenser
Posted by Doug Messier
on October 11, 2012, at 4:04 pm
(https://img.novosti-kosmonavtiki.ru/81771.jpg)
SEATTLE, WA, 11 October 2012 (Andrews Space PR) – Andrews Space (Andrews) today announced it signed an agreement with ISIS of the Netherlands to begin manufacturing a US version of the ISIPOD, branded the EZPOD, in the United States. Under the terms of the agreement, Andrews will manufacture and integrate the EZPODs domestically with initial units available as early as January 2013.
"Until now the United States only had a single CubeSat dispenser solution available. The ISIS ISIPOD product is reliable, proven and lower-cost than similar products on the market and now it's available in the United States, under the brand name EZPOD, as a domestically manufactured solution," said Jason Andrews, President and CEO of Andrews Space. "The EZPOD gives our customers a highly competitive alternative to the status quo."
Abe Bonnema, Marketing Director of ISIS, said "Our agreement with Andrews Space extends our dispenser product line into the United States, satisfying the need for US customers to have a domestically produced product, manufactured by a company that meets ISIS' high standards for quality and workmanship."
Jason Andrews adds, "We will continue to expand our partnership with ISIS to manufacture 6U and 12U EZPOD dispensers for larger CubeSats as well. Both structures and dispensers for these sizes will be available during the first half of 2013".
All Andrews products and components are built domestically using Andrews' AS9100C certified quality procedures for spaceflight hardware.
About Andrews Space
Andrews Space, Inc. was founded in 1999 to be a catalyst in the commercialization and development of space. The company is an affordable integrator of aerospace systems and developer of advanced space technologies. To learn more, please visit: www.andrews-space.com.
About ISIS – Innovative Solutions In Space
ISIS – Innovative Solutions In Space B.V. was founded in 2006 to enable more cost-effective space missions by using nano-satellite systems. The company is a vertically integrated company in the nanosatellite segment and a developer and provider of various nanosatellite modules, systems and services. For more information, please visit: www.isispace.nl .
ЦитироватьЦитироватьпару МБР с грузом таких вот аппаратиков на борту. Которые в случае военного конфликта стартуют и выводят этот рой на орбиту.
А как вы отличите пуск таких МБР от боевых?
Ну МБР это плохое название. Погорячился. :) Это РН, твердотопливные, вероятно не шахтного базирования. В общем отличие должно быть во всем. В т.ч в оповещении заранее стран, таких как наша. Ведь с нами воевать с использованием таких спутников будет менее эффективно, чем сразу пускать настоящую МБР безо всякой ерундятины...
А против Ирана, например, запросто сработает.
http://ebull.ru/dl/147is_49.pdf
ЦитироватьНАСА запускает наноспутники университетов США
В начале 2012 года было отобрано на конкурсной основе 32 проекта запуска наноспутников. Список включает 26 гражданских и военных заведений образования, а также общественную организацию радиолюбителей АМСАТ (www.amsa.org), весь список здесь: http://www.nasa.gov/home/hqnews/2012/feb/HQ_12-050_CubeSats.html. В начале 2012 года попутным запуском было запущено 8 наноспутников. Следующий
пуск состоялся 13 августа 2012 года, попутно с запуском спутника NROL–36 Национального разведывательного управления США (под задачи ВМФ) с помощью ракеты Атлас–5, кстати, имеющей на первой ступени российские двигатели РД–180. Кроме основного спутника весом в несколько тонн дополнительно было запущено сразу 11 наноспутников по программе ELaNa.
Читать далее ....
ЦитироватьEchidna пишет:
Они забыли отметить, что такая система планируется не введеной в эксплуатацию :) Т.е сейчас они ее отрабатывать будут. И если поймут, что все хорошо и она решает все задачи, то просто на боевое дежурство поставят пару МБР с грузом таких вот аппаратиков на борту. Которые в случае военного конфликта стартуют и выводят этот рой на орбиту. Ну и через сутки уже 2-3 месяца работающая система в распоряжении военных.
Дешево и сердито. :) Не надо поддерживать постоянно функционирующей систему, потому что развернуть ее - дело 1-2 пусков.
Случаи острого военного напряжения всё же достаточно пространственно локальны. Что на оперативном и оперативно-тактическом уровнях толку от вашего Роя? До повторного возврата в интересующий вас район он будет несколько суток болтаться над теми местами, которые вашему командованию нисколько не интересны. У малых же КА , рассеяных в пространстве поодиночке, элементарно не хватит производительности для оказания сколь-нибудь значимых информационных услуг. Если же Вы решите очень плотно заполонить МКА/Роями всё космическое пространство вокруг Земли, то такой акт будет однозначно расценен серьезным противником как акт агрессии и он просто, в крайнем случае, взорвёт несколько ядерных зарядов в космосе - создаст мощные искусственные радиационные пояса на орбитах роёв с соответствующими последствиями для слабозащищённой электроники малых КА. Что касается других КА, что своих, что чужих, то их судьба в столь сложный момент также никого интересовать не будет.
Удивляет сейчас другое - отсутствие достоверной информации о разработках суборбитальных систем информационного обеспечения (связь, управление, разведка...) оперативно-тактического уровня, которые можно запустить с помощью авиационной или наземно/морской оперативно-тактической ракеты ровно тогда и там, где это вам действительно необходимо и удерживать над интересующей территорией не единицы минут, а десятки минут и единицы часов и без особых проблем к их восполнению. Сбить их в отличии от чисто аэродинамических БПЛА будет куда как сложнее. Толку имхо будет на порядки больше, чем от Роёв МКА на орбитах.
Что касается пресловутого "роя" - как обидно будет пчёлам когда над интересующим районом окажется облачность... :(
В целом данная идея это классика умышленной дезинформации через открытые источники.
ЦитироватьСтарый пишет:
Что касается пресловутого "роя" - как обидно будет пчёлам когда над интересующим районом окажется облачность... :(
.
Это даже не обсуждается - пчёлы умрут от одной лишь досады.:)
ЦитироватьСтарый пишет:
В целом данная идея это классика умышленной дезинформации через открытые источники.
Про Рои МКА согласен. Отдельный интерес имхо могут представлять
глобальные сетевые КС, построенные по схеме Иридиума (но также с оговоркой, что тоже не вундервафля и , во-вторых, это не МКА).
А что скажете про идею суборбитальных систем информационного обеспечения поля боя?
ЦитироватьStalky пишет:
Удивляет сейчас другое - отсутствие достоверной информации о разработках суборбитальных систем информационного обеспечения (связь, управление, разведка...) оперативно-тактического уровня, которые можно запустить с помощью авиационной или наземно/морской тактической ракеты ровно тогда и там, где это вам действительно необходимо и удерживать над интересующей территорией не единицы минут, а десятки минут и единицы часов и без особых проблем к их восполнению. Сбить их в отличии от аэродинамических БПЛА будет куда как сложнее. Толку имхо будет на порядки больше, чем от Роёв МКА на орбитах.
Это как это такое возможно? Суборбитальные аппараты "висят" 5, максимум 10 минут. Или Вы их предлагаете запускать на траектории с апогеем в десятки тысяч км, как неудачные американские лунные зонды в 50-х?
Цитироватьpkl пишет:
ЦитироватьStalky пишет:
Удивляет сейчас другое - отсутствие достоверной информации о разработках суборбитальных систем информационного обеспечения (связь, управление, разведка...) оперативно-тактического уровня, которые можно запустить с помощью авиационной или наземно/морской тактической ракеты ровно тогда и там, где это вам действительно необходимо и удерживать над интересующей территорией не единицы минут, а десятки минут и единицы часов и без особых проблем к их восполнению . Сбить их в отличии от аэродинамических БПЛА будет куда как сложнее. Толку имхо будет на порядки больше, чем от Роёв МКА на орбитах.
Это как это такое возможно? Суборбитальные аппараты "висят" 5, максимум 10 минут. Или Вы их предлагаете запускать на траектории с апогеем в десятки тысяч км, как неудачные американские лунные зонды в 50-х?
Это если они падают как кирпичи. Они кому-то клялись всегда так поступать? Запасённую потенциальную энергию ведь можно и более рачительно использовать - аэродинамические поверхности, тормозные экраны, парашюты, двигатели, наконец...имхо можно много чего придумать.
ЦитироватьStalky пишет: Отдельный интерес имхо могут представлять глобальные сетевые КС, построенные по схеме Иридиума (но также с оговоркой, что тоже не вундервафля и , во-вторых, это не МКА).
Это да. И, кстати, НОСС - одна из них. Но об этом тоже предпочитают молчать.
Упс!!! Кстати, наконец-то :) просмотрел более внимательно предлагаемые в ветке статьи на английском. Дурят нам голову и не стесняются.
Обратите внимание на Kestrel Eye(Глаз Пустельги) + мобильная ПУ для их запуска. Но вот вопрос - запуска на орбиту или суборбитального?
Как быть с тем, что: Пустельга - см.Вики - маленький сокол. Обладает способностью к трепещущему полёту. Во время охоты пустельга ВИСИТ в воздухе, часто трепеща крыльями и высматривает добычу.
Тото у Сокола-1 двигатель второй ступени назывался "Кестрел"... :) ;)
Подозреваю всётаки что авторы названия "Кестрел Ай" намекали на зоркость глаза соколика а не на способ полёта. Ато б они назвали аппарат "Кестрел флай" или на худой конец "Кестрел винг". :)
ЦитироватьСтарый пишет:
Тото у Сокола-1 двигатель второй ступени назывался "Кестрел"... :) ;)
Подозреваю всётаки что авторы названия "Кестрел Ай" намекали на зоркость глаза соколика а не на способ полёта. Ато б они назвали аппарат "Кестрел флай" или на худой конец "Кестрел винг". :)
Ну и хрен с ними. Я то всё о своём пою, а про этих что сказать?...шифруются, гадюки. :) Всё равно имхо к этому (локальному, суборбитальному) способу придут. Там ещё и про мобильную ПУ говорится, а Сокол-1 в мобильном виде представить себе трудновато будет. Да и на хрен его по всему миру таскать за собой? А вот ОТР - никаких проблем.
Сомневаюсь я что будут суборбитальные разведывательные системы общего назначения.
Что же касается локального то уже и сейчас изобретают какието ракеты с кассетными боеприпасами которые сами выискивают на местности например танки и пикируют на них.
ЦитироватьСтарый пишет:
Сомневаюсь я что будут суборбитальные разведывательные системы общего назначения.
Что же касается локального то уже и сейчас изобретают какието ракеты с кассетными боеприпасами которые сами выискивают на местности например танки и пикируют на них.
Есть такие, но вероятность запулить в район где ничего нет достаточно высока.
Ну, суборбиталка - это всяко меньший бред, чем рои и эскадры МКА.
Минимальный размер оперативной(армейской) зоны от 100 км по фронту и от 300 км вглубь. При развитой ПВО обычные беспилотники (которые чрезвычайно хороши против папуасов) не имеют много шансов на успех по вскрытию обстановки в зоне таких размеров и особенно на удалении от переднего края, то есть там, где расположены большая часть органов управления, ударных средств большой мощности и логистическая инфраструктура.
У КА очень низкая периодичность и/или производительность (в тч и из-за малого время пребывания в районе) + они прибывают в район разведки не когда нужно командованию, а когда смогут.. Возможность командованию армии самостоятельно принять и осуществить решение на вскрытие обстановки в требуемом районе в требуемое время - дорогого стоит. Естественно, что проблема не решается каким-то одним способом или средством.Только комплексно.
ЦитироватьStalky пишет: При развитой ПВО обычные беспилотники (которые чрезвычайно хороши против папуасов) не имеют много шансов на успех по вскрытию обстановки в зоне таких размеров и особенно на удалении от переднего края, то есть там, где расположены большая часть органов управления, ударных средств большой мощности и логистическая инфраструктура.
У КА очень низкая периодичность и/или производительность (в тч и из-за малого время пребывания в районе) + они прибывают в район разведки не когда нужно командованию, а когда смогут.. Возможность командованию армии самостоятельно принять и осуществить решение на вскрытие обстановки в требуемом районе в требуемое время - дорогого стоит. Естественно, что проблема не решается каким-то одним способом или средством.Только комплексно.
Боевые действия против стороны имеющей развитую ПВО будут проходить совсем иначе нежели чем против папуасов. И врядли там вообще будет поле боя, линия фронта, армейская зона и т.п. Войны против таких стран ведутся путём разрушения транспортно-энергетической инфраструктуры, а те путём сражений войск на поле боя. Объекты инфраструктуры подлежащие разрушению стационарны и выявляются стратегической спутниковой разведкой ещё до начала боевых действий.
Что касается фронтовых операций то в них первым делом уничтожается какраз ПВО. А уж только после этого наступает черёд танков и прочей пехоты. Из ПВО в первую очередь уничтожается ПВО построеная на радиолокационных принципах, она выявляется в реалтайме спутниками типа НОСС. Именно эта ПВО прикрывает большие высоты. После её уничтожения полёты на больших высотах становятся безопасны и дальше разведка ведётся с работающих на больших высотах БПЛА а работающая оттуда же обычная пилотируемая авиация управляемым оружием довершает разгром. Вот примерно так ведутся современные войны против серъёзного противника.
Развитая ПВО сбивает балистические цели не хуже а часто и даже лучше чем аэродинамические. Так что балистика не поможет. Суборбитальные же разведчики мало чем отличаются от спутников и если отличаются то только в худшую сторону.
ЦитироватьСтарый пишет:
ЦитироватьStalky пишет: При развитой ПВО обычные беспилотники (которые чрезвычайно хороши против папуасов) не имеют много шансов на успех по вскрытию обстановки в зоне таких размеров и особенно на удалении от переднего края, то есть там, где расположены большая часть органов управления, ударных средств большой мощности и логистическая инфраструктура.
У КА очень низкая периодичность и/или производительность (в тч и из-за малого время пребывания в районе) + они прибывают в район разведки не когда нужно командованию, а когда смогут.. Возможность командованию армии самостоятельно принять и осуществить решение на вскрытие обстановки в требуемом районе в требуемое время - дорогого стоит. Естественно, что проблема не решается каким-то одним способом или средством.Только комплексно.
Боевые действия против стороны имеющей развитую ПВО будут проходить совсем иначе нежели чем против папуасов. И врядли там вообще будет поле боя, линия фронта, армейская зона и т.п. Войны против таких стран ведутся путём разрушения транспортно-энергетической инфраструктуры, а те путём сражений войск на поле боя. Объекты инфраструктуры подлежащие разрушению стационарны и выявляются стратегической спутниковой разведкой ещё до начала боевых действий.
Что касается фронтовых операций то в них первым делом уничтожается какраз ПВО. А уж только после этого наступает черёд танков и прочей пехоты. Из ПВО в первую очередь уничтожается ПВО построеная на радиолокационных принципах, она выявляется в реалтайме спутниками типа НОСС. Именно эта ПВО прикрывает большие высоты. После её уничтожения полёты на больших высотах становятся безопасны и дальше разведка ведётся с работающих на больших высотах БПЛА а работающая оттуда же обычная пилотируемая авиация управляемым оружием довершает разгром. Вот примерно так ведутся современные войны против серъёзного противника.
Развитая ПВО сбивает балистические цели не хуже а часто и даже лучше чем аэродинамические. Так что балистика не поможет. Суборбитальные же разведчики мало чем отличаются от спутников и если отличаются то только в худшую сторону.
Это бесконеный разговор. В том числе и бесконечно интересный. Но вы описываете недостаточно сильного противника - того, который в основном только обороняется.
Но не нужно же забывать, что пока вы так живописно его громите, то равный/сопоставимый вам делает с вами ровно то же, так что и поле/пространство сражения/боя никуда не денется ,и может сложиться ситуация, что ПВО вообще не удастся ослабить настолько, чтобы сделать безопасным применение обычных авиационных средств разведки и поражения. Как известно лучшее средство ПВО - бомбо-штурмовой и ракетные удары по аэродромам и пусковым позициям противника.
"Суборбитальным"(в моём представлении) разведчик может быть таковым только по способу доставки на достаточно большую высоту(например, 100 км) с помощью, например, ОТР, далее он вовсе не обязан падать как камень - он может совершать вполне себе не баллистический полёт по сложной траектории, продолжительное время пребывая в интересующей зоне. Сбить его будет совсем не просто и не дёшево.
Что касается НОСС. Их не так уж и много, пока(насколько это может быть известно) они не контролируют пространство глобально и непрерывно. РЛС может и помолчать на период пролета очередной стайки. Зону прикроет авиация. Никто не отменял не только маскировку, но и создание ложной целевой обстановки. Ну, и кроме того никто не отменял , что НОСС и сам может являться мишенью.
В конечном итоге победит тот, кто при прочих равных, будет иметь меньший(более быстрый) цикл управления войсками, силами и оружием, в том числе и более быстрый цикл разведки.
ЦитироватьStalky пишет:
Но не нужно же забывать, что пока вы так живописно его громите, то равный/сопоставимый вам делает с вами ровно то же, так что и поле/пространство сражения/боя никуда не денется ,и может сложиться ситуация, что ПВО вообще не удастся ослабить настолько, чтобы сделать безопасным применение обычных авиационных средств разведки и поражения. Как известно лучшее средство ПВО - бомбо-штурмовой и ракетные удары по аэродромам и пусковым позициям противника.
"Суборбитальным"(в моём представлении) разведчик может быть таковым только по способу доставки на достаточно большую высоту(например, 100 км) с помощью, например, ОТР, далее он вовсе не обязан падать как камень - он может совершать вполне себе не баллистический полёт по сложной траектории, продолжительное время пребывая в интересующей зоне. Сбить его будет совсем не просто и не дёшево.
Что касается НОСС. Их не так уж и много, пока(насколько это может быть известно) они не контролируют пространство глобально и непрерывно. РЛС может и помолчать на период пролета очередной стайки. Зону прикроет авиация. Никто не отменял не только маскировку, но и создание ложной целевой обстановки. Ну, и кроме того никто не отменял , что НОСС и сам может являться мишенью.
В конечном итоге победит тот, кто при прочих равных, будет иметь меньший(более быстрый) цикл управления войсками, силами и оружием, в том числе и более быстрый цикл разведки.
С равным/сопоставимым противником не ведут войну ибо слишком накладно и опасно, проблемы с ним решают путём переговоров.
Ну а если всётаки война то ведётся она точно так же как я описал. Побеждает тот кто быстрее и лучше выведет из строя транспортно-энергетическую инфраструктуру противника и подавит его ПВО. Исход войны будет решаться отнюдь не полевыми войсками на поле боя.
Четыре группы НОССов просматривают территорию на широте Москвы примерно 12 часов в сутки, то есть грубо говоря квазинепрерывно. Если на время пролёта НОССа радиоизлучающие ЗРК выключать то за это время авиация не оставит от них (от ЗРК) камня на камне.
Победит тот кто имеет преимущество в указаных видах оружия и боевых действий. "Обычная" разведка общевойсковых целей на поле боя в них не входит.
Оккупация территории противника и наземные боевые действия происходят лишь тогда когда сопротивление противника в высокотехнологичной сфере полностью сломлено. Наземные боевые действия сводятся практически к противопартизанским где разного рода БПЛА, ветролёты и Ганшипы являются основным средством как разведки так и боевых действий. .
Да, и как правило равный/сопоставимый противник располагает ядерным оружием что вообще радикально меняет всю картину. Тут уж не до танков...
ЦитироватьVideo: Pete Worden Talks About Small Satellite Potential (http://www.parabolicarc.com/2012/11/23/video-pete-worden-talks-about-small-satellite-potential/)
by Doug Messier
on November 23, 2012, at 6:25 am
http://www.youtube.com/watch?feature=player_embedded&v=d9qyQtaT3wM (http://www.youtube.com/watch?feature=player_embedded&v=d9qyQtaT3wM)
Video Caption: NASA Ames Research Center Director Pete Worden was invited as keynote speaker to the Canadian Space Summit to talk about Small Satellites for Science and Other Uses using Earth Observation as an example.
ЦитироватьСтарый пишет:
ЦитироватьStalky
В конечном итоге победит тот, кто при прочих равных, будет иметь меньший(более быстрый) цикл управления войсками, силами и оружием, в том числе и более быстрый цикл разведки.
Победит тот кто имеет преимущество в указаных видах оружия и боевых действий. "Обычная" разведка общевойсковых целей на поле боя в них не входит.
Ладно,завязываем, говорю же, что спор бесконечный, особенно при не системном/фрагментарном рассмотрении. Но если есть желание, готов оспорить аргументированно каждый пункт. :)
Но пусть лучше кто-то ещё что-то скажет в пользу перспектив МКА в военном деле...или в других делах. Интересно же послушать.
ЦитироватьStalky пишет:
Ладно,завязываем, говорю же, что спор бесконечный, особенно при не системном/фрагментарном рассмотрении. Но если есть желание, готов оспорить аргументированно каждый пункт. :)
Можно и поспорить. А можно и не спорить если вы согласитесь что у спутниковой видовой разведки в интересах полевых войск НННШ.
ЦитироватьСтарый пишет:
ЦитироватьStalky пишет:
Ладно,завязываем, говорю же, что спор бесконечный, особенно при не системном/фрагментарном рассмотрении. Но если есть желание, готов оспорить аргументированно каждый пункт. :)
Можно и поспорить. А можно и не спорить если вы согласитесь что у спутниковой видовой разведки в интересах полевых войск НННШ.
А что Вы подразумеваете под "полевыми войсками"?
ЦитироватьStalky пишет:
А что Вы подразумеваете под "полевыми войсками"?
То что определили вы: армейское звено и ниже. Впрочем могу даже поднять планку до уровня командующего фронтом.
Освещение в открытых зарубежных источниках вопросов спутниковой разведки это бессмертная классика умышленной дезинформации. И обсуждение этого вопроса интересно уже само по себе.
ЦитироватьСтарый пишет:
ЦитироватьStalky пишет:
А что Вы подразумеваете под "полевыми войсками"?
То что определили вы: армейское звено и ниже. Впрочем могу даже поднять планку до уровня командующего фронтом.
Как это понимать? Этим уровням управления в принципе недоступны данные систем/средств космической видовой разведки или недоступно что-то иное? Что именно недоступно - уточните, пож-ста.
ЦитироватьStalky пишет:
ЦитироватьСтарый пишет:
ЦитироватьStalky пишет:
А что Вы подразумеваете под "полевыми войсками"?
То что определили вы: армейское звено и ниже. Впрочем могу даже поднять планку до уровня командующего фронтом.
Как это понимать? Этим уровням управления в принципе недоступны данные систем/средств космической видовой разведки или недоступно что-то иное? Что именно недоступно - уточните, пож-ста.
Дело в не недоступности данных, а в их актуальности. Что толку знать информацию, которая уже устарела?
ЦитироватьDed пишет:
ЦитироватьStalky пишет:
ЦитироватьСтарый пишет:
ЦитироватьStalky пишет:
А что Вы подразумеваете под "полевыми войсками"?
То что определили вы: армейское звено и ниже. Впрочем могу даже поднять планку до уровня командующего фронтом.
Как это понимать? Этим уровням управления в принципе недоступны данные систем/средств космической видовой разведки или недоступно что-то иное? Что именно недоступно - уточните, пож-ста.
Дело в не недоступности данных, а в их актуальности. Что толку знать информацию, которая уже устарела?
Определимся в дефинициях? Разделим "данные" и "информацию". Договоримся понимать под "информацией" те сведения и в той форме, что не просто увеличивает ваши абстрактные знания о чём-то, а, это важно,
объективно помогает вам принять верное
решение в рамках
конкретно решаемой вами задачи, а под "данными" всё остальное...
Вы в принципе исключаете возможность получения командующим фронтом/армией любых сведений от КС видовой разведки, которые позволят ему выдать эффективное(по наступившим последствиям) решение на действия своих войск/сил и применение оружия?
ЦитироватьStalky пишет:
Как это понимать? Этим уровням управления в принципе недоступны данные систем/средств космической видовой разведки или недоступно что-то иное? Что именно недоступно - уточните, пож-ста.
Понимать это так что у спутниковой видовой разведки в интересах этих организаций НННШ.
Почему? Потому что неэффективна. Дорога и неэффективна. Теоретически доступна но практически неэффективна. Поэтому никто и не будет тратить на неё силы и средства, тем более в военное время и в боевой обстановке. Создание и использования дорогого но неэффективного вооружения ведёт к поражению в войне (это, кстати, одна из целей умышленной дезинформации в данной области).
ЦитироватьStalky пишет:
ЦитироватьDed пишет:
ЦитироватьStalky пишет:
ЦитироватьСтарый пишет:
ЦитироватьStalky пишет:
А что Вы подразумеваете под "полевыми войсками"?
То что определили вы: армейское звено и ниже. Впрочем могу даже поднять планку до уровня командующего фронтом.
Как это понимать? Этим уровням управления в принципе недоступны данные систем/средств космической видовой разведки или недоступно что-то иное? Что именно недоступно - уточните, пож-ста.
Дело в не недоступности данных, а в их актуальности. Что толку знать информацию, которая уже устарела?
Определимся в дефинициях? Разделим "данные" и "информацию". Договоримся понимать под "информацией" те сведения и в той форме, что не просто увеличивает ваши абстрактные знания о чём-то, а, это важно, объективно помогает вам принять верное решение в рамках конкретно решаемой вами задачи, а под "данными" всё остальное...
Вы в принципе исключаете возможность получения командующим фронтом/армией любых сведений от КС видовой разведки, которые позволят ему выдать эффективное(по наступившим последствиям) решение на действия своих войск/сил и применение оружия?
Если честно - то первая часть Вашего поста для меня осталась непонятной.
Что касается второй - то сразу скажу, что не исключаю. Но я писал об актуальности.
Пример:
- командир мотострелкового взвода получил фотографию получасовой дальности, на которой впереди пять танков. Его решение?
Я говорю о том, что при решении оперативных задач (о тактических и речи нет) спутники - очень малая (если вообще существующая) помощь.
Что касается фронта и армии, то необходимо смотреть на соотношение длины фронта и глубины обороны к ширине полосы захвата КА. Это определяет время на получение полной информации, при этом первая фотография с большой вероятностью станет"липой".
ЦитироватьDed пишет:
Что касается фронта и армии, то необходимо смотреть на соотношение длины фронта и глубины обороны к ширине полосы захвата КА. Это определяет время на получение полной информации, при этом первая фотография с большой вероятностью станет"липой".
И в целом руководство уровня фронта/армии и даже дивизии интересует оперативная обстановка в целом и совершенно не интересует конкретное расположение конкретных объектов на местности. Так что спутникам пришлось бы в реалтайме отслеживать перемещения войск по всей оперативной зоне а системе обработки обобщать её и доводить до командования.
ЦитироватьСтарый пишет:
ЦитироватьStalky пишет:
Как это понимать? Этим уровням управления в принципе недоступны данные систем/средств космической видовой разведки или недоступно что-то иное? Что именно недоступно - уточните, пож-ста.
Понимать это так что у спутниковой видовой разведки в интересах этих организаций НННШ.
Почему? Потому что неэффективна. Дорога и неэффективна. Теоретически доступна но практически неэффективна. Поэтому никто и не будет тратить на неё силы и средства, тем более в военное время и в боевой обстановке. Создание и использования дорогого но неэффективного вооружения ведёт к поражению в войне (это, кстати, одна из целей умышленной дезинформации в данной области).
Что значит неэффективна и дорога, если она уже существует. Если КН-12 пролетая над районом интересующим командование фронта/армии сделал некий снимок и слил в реалтайм этот снимок через TDRS в NRO, оттуда его также быстро перелили непосредственно в разведорган фронта/армии и там дежурный дешифровщик обнаружил нечто, что напоминает разгрузку эшелона с батареей мобильных ПУ ОТР противника - он, что по Вашему должен сделать - продолжить жевать гамбургер с мыслью: да, ладно, так не бывает...или все же доложить по команде вышестоящим офицерам штаба фронта? Как Вы думаете сколько времени займёт принятие решения на поражение столь важной цели и отдача соответствующего распоряжения вкупе с целеуказанием? Не думаю, что эшелон успеет разгрузиться. Да, рассчитывать на это как на полностью управляемый вами источник нельзя, но пользоваться то можно.
Пояснения для Деда - снимок, пока он гуляет по сетям связи и собственно сам снимок - для штаба это данные, когда он попал в руки дешифровщика, то для него он стал информацией, а для штаба в целом так и остался данными, а вот когда дешифровщик принёс наверх своё донесение с описанием типа цели, её координат и временной привязкой, то это для штаба и стало информацией. А сам снимок им не нужен - им нужен список целей с координатной и временной привязкой соответствующей стрельбовой точности и оперативности их оружия.
ЦитироватьСтарый пишет:
ЦитироватьDed пишет:
Что касается фронта и армии, то необходимо смотреть на соотношение длины фронта и глубины обороны к ширине полосы захвата КА. Это определяет время на получение полной информации, при этом первая фотография с большой вероятностью станет"липой".
И в целом руководство уровня фронта/армии и даже дивизии интересует оперативная обстановка в целом и совершенно не интересует конкретное расположение конкретных объектов на местности. Так что спутникам пришлось бы в реалтайме отслеживать перемещения войск по всей оперативной зоне а системе обработки обобщать её и доводить до командования.
Да, так и есть. Но бывают и исключения - в виде,например, командных пунктов противника или,например, ПУ ОТР, на которых возможно установлены спецБЧ.:) Тогда доклад разведоргана наверх следует не в целом по обстановке, а по конкретной цели. И следует немедленно.
ЦитироватьDed пишет:
ЦитироватьStalky пишет:
ЦитироватьDed пишет:
ЦитироватьStalky пишет:
ЦитироватьСтарый пишет:
ЦитироватьStalky пишет:
А что Вы подразумеваете под "полевыми войсками"?
То что определили вы: армейское звено и ниже. Впрочем могу даже поднять планку до уровня командующего фронтом.
Как это понимать? Этим уровням управления в принципе недоступны данные систем/средств космической видовой разведки или недоступно что-то иное? Что именно недоступно - уточните, пож-ста.
Дело в не недоступности данных, а в их актуальности. Что толку знать информацию, которая уже устарела?
Определимся в дефинициях? Разделим "данные" и "информацию". Договоримся понимать под "информацией" те сведения и в той форме, что не просто увеличивает ваши абстрактные знания о чём-то, а, это важно, объективно помогает вам принять верное решение в рамках конкретно решаемой вами задачи, а под "данными" всё остальное...
Вы в принципе исключаете возможность получения командующим фронтом/армией любых сведений от КС видовой разведки, которые позволят ему выдать эффективное(по наступившим последствиям) решение на действия своих войск/сил и применение оружия?
- командир мотострелкового взвода получил фотографию получасовой дальности, на которой впереди пять танков. Его решение?
Командиру взвода ваша фотография на хрен не упала. Он(будем считать, что он служит в продвинутой армии) получает на свой тактический терминал сообщение, что в таком-то районе, тогда-то возможно находилось танковое подразделение противника, с предполагаемым азимутом движения таким-то. Возможно он не получит более ничего, возможно он получит приказ уточнить обстановку собственными силами и отправит рядового Бельдыева в разведку, а возможно запустит взводный беспилотник, а возможно...вариантов море. Ясно одно - фото со спутника ему точно не нужно.А вот информация нужна.
ЦитироватьStalky пишет:
Что значит неэффективна и дорога, если она уже существует.
"Неэффективна и дорога" значит неэффективна и дорога.
И не существует.
ЦитироватьЕсли КН-12 пролетая над районом интересующим командование фронта/армии сделал некий снимок и слил в реалтайм этот снимок через TDRS в NRO, оттуда его также быстро перелили непосредственно в разведорган фронта/армии и там дежурный дешифровщик обнаружил нечто, что напоминает разгрузку эшелона с батареей мобильных ПУ ОТР противника
Нет. Дежурный дешифровльщик обнаружил что нифига на станции не разгружается. Впустую расходовал моторесурс КН-12, ТДРС, канал связи с разведотделом армии и сам дешифровщик. Вот это и называется "дорого и неэффективно".
Да и станцию КН-12 не фотографировал потому что он в это время фотографировал переправу у реки в 10 км в стороне чтоб поглядеть не переправляется ли колонна мобильных ПУ ОТР там. Там их впрочем тоже не оказалось.
Понимаете? Чтобы обнаружить ПУ ОТР надо точно знать где они чтобы посмотреть именно в это место. А если вы и так знаете где они то нахрена вам спутник?
ЦитироватьДа, рассчитывать на это как на полностью управляемый вами источник нельзя, но пользоваться то можно.
Вот это и называется "дорого и неэффективно" - рассчитывать что противник сам подставится под случайный снимок.Впрочем противник подставится. Ко времени пролёта спутника поставит на разгрузочной площадке несколько БТРов с бревном под маскировочной сетью и толпой бегающих вокруг солдат для оживляжа. За время пока вы среагируете солдатики спрячутся, БТРы спишут, отдел противодействия техническим средствам разведки нарисует себе жирный плюс а настоящие ОТР могут ездить спокойно - их больше никто не будет искать. Тото будет сюрприз когда они найдутся сами! :)
Вы находитесь в плену представлений прошлой войны, когда исход боя можно было решить удачно накрыв эшелон. В наше время исход сражения решается подавлением ПВО. После чего авиация господоствует в воздухе и методично выбивает локальную ПВО, эшелоны, ОТР, танки, прочие боевые машины, просто автомобили, всё остальное. После чего война переходит в фазу контрпартизанской операции против заныкавшихся в лесах отдельных бойцов с автоматами.
ЦитироватьСтарый пишет.
Нет. Дежурный дешифровльщик обнаружил что нифига на станции не разгружается. Впустую расходовал моторесурс КН-12, ТДРС, канал связи с разведотделом армии и сам дешифровщик. Вот это и называется "дорого и неэффективно".
Да и станцию КН-12 не фотографировал потому что он в это время фотографировал переправу у реки в 10 км в стороне чтоб поглядеть не переправляется ли колонна мобильных ПУ ОТР там. Там их впрочем тоже не оказалось.
Понимаете? Чтобы обнаружить ПУ ОТР надо точно знать где они чтобы посмотреть именно в это место. А если вы и так знаете где они то нахрена вам спутник?
ЦитироватьДа, рассчитывать на это как на полностью управляемый вами источник нельзя, но пользоваться то можно.
Вот это и называется "дорого и неэффективно" - рассчитывать что противник сам подставится под случайный снимок.Впрочем противник подставится. Ко времени пролёта спутника поставит на разгрузочной площадке несколько БТРов с бревном под маскировочной сетью и толпой бегающих вокруг солдат для оживляжа. За время пока вы среагируете солдатики спрячутся, БТРы спишут, отдел противодействия техническим средствам разведки нарисует себе жирный плюс а настоящие ОТР могут ездить спокойно - их больше никто не будет искать. Тото будет сюрприз когда они найдутся сами! :)
Вы находитесь в плену представлений прошлой войны, когда исход боя можно было решить удачно накрыв эшелон. В наше время исход сражения решается подавлением ПВО. После чего авиация господоствует в воздухе и методично выбивает локальную ПВО, эшелоны, ОТР, танки, прочие боевые машины, просто автомобили, всё остальное. После чего война переходит в фазу контрпартизанской операции против заныкавшихся в лесах отдельных бойцов с автоматами.
Cтарый, Вы пройдитесь по предыдущим постам. Обнаружиться, что Вы начали использовать те аргументы, которые раньше использовал я, и наоборот...это к замечанию про возможную бесконечность нашего "спора" при бессистемном фрагментарном* обсуждении картины- на самом деле его и нет, судя по форуму, мы имеем примерно одинаковые мнения по этому вопросу, но в ряде случаев Ваше более категорично. :)
* - Одна система ничего не решит, одновременно работает множество систем и десятки...сотни средств разведки, связи, боевого управления...и оружия.Ну, и само собой войска/силы....
И немного о терминах. Фронт/Армия не ведут "бои", у них - "сражения" в форме фронтовых или армейских операций различного толка...а это не одно и то же, что "бои", которые ведут тактические единицы. Бой и сейчас можно выиграть разбомбив эшелон, а сражения и раньше не выигрывались в результате только лишь разбомбления этого же эшелона.
Все же или нужно завязывать или оговорить какие-то более внятные показатели и критерии для оценки целесообразности применения КС, чем эмоциональное перепихивание друг другу одних и тех же частных примеров.
ЦитироватьStalky пишет:
И немного о терминах. Фронт/Армия не ведут "бои", у них - "сражения" в форме фронтовых или армейских операций различного толка...а это не одно и то же, что "бои", которые ведут тактические единицы. Бой и сейчас можно выиграть разбомбив эшелон, а сражения и раньше не выигрывались в результате только лишь разбомбления этого же эшелона.
Вот поэтому фронту и армии информация детальной видовой разведки и ни к чему.
Да, надо определиться о чём мы говорим. О ВМВ перенесённой в современные условия или о современной войне?
http://www.spacenews.com/article/report-readied-on-options-for-%E2%80%98tacsat-4-like%E2%80%99-small-satellites#.ULP0rGfvqBg
ЦитироватьReport Readied on Options for 'TacSat-4-like' Small Satellites
Nov. 21, 2012
(http://www.spacenews.com/sites/spacenews.com/files/styles/large/public/images/articles/TacSat4_NRL4X3.jpg)
TacSat-4, which weighs 450 kilograms, has "demonstrated a low, [highly elliptical orbit] small satellite can provide military utility," said Bill Raynor, Navy TacSat-4 program manager. Credit: U.S. Naval Research Laboratory photo
WASHINGTON — Future options for "TacSat-4-like" small satellites will be outlined in a U.S. Department of Defense (DoD) report scheduled to be finalized in mid-December, according to a program official.
DoD already has launched four Tactical Microsatellites (TacSats) to test new space capabilities. The most recent, the TacSat-4 UHF communications satellite, lifted off in September 2011.
The upcoming report, which the Naval Research Laboratory is preparing for DoD's Operationally Responsive Space Office, will assess the future utility of such systems, said Navy TacSat-4 program manager Bill Raynor, who spoke Nov. 9 at a small-satellite conference in Washington. Raynor hinted at one possible conclusion: Any future spacecraft would be designed differently than TacSat-4.
"If you were to fly a TacSat-like mission, I dare say that it would not look like TacSat-4," he said. "To start, we'd probably have two smaller antennas rather than one large, 12-foot [3.6-meter] dish. It helps considerably with packaging, making it much easier to launch multiple satellites on a single launch."
During its time on orbit, TacSat-4 has participated in U.S. and Canadian sea exercises and helped the U.S. Coast Guard communicate with an icebreaker supporting a wintertime natural gas delivery to remote Nome, Alaska, Raynor said. In addition, the TacSat-4 program provided a portable ground terminal to a Coast Guard station in Kodiak, Alaska, to help the maritime service communicate in and around Alaska.
TacSat-4, which weighs 450 kilograms, has "demonstrated that a low, [highly elliptical orbit] small satellite can provide military utility," he said.
Controlled fr om the Army's Blossom Point Research Facility in southern Maryland, the satellite is on track to meet or exceed its three-year design life requirement, "so we still have two-plus years of life remaining," Raynor told the first International Symposium on Small Satellites for Arctic and Maritime Operations and Research.
Other small sats
Symposium speakers also highlighted the near-term potential for other small satellites to improve such things as environmental monitoring and maritime safety.
For vessel tracking, Fort Lee, N.J.-based Orbcomm, which has two Automatic Identification Service (AIS) satellites on orbit, plans to launch 18 more satellites by 2014, all of which will have AIS receivers. Eight of those will be launched on a SpaceX Falcon 9 rocket in mid-2013, said Greg Flessate, Orbcomm vice president for government and maritime.
Ontario, Canada-based exactEarth, which has four AIS satellites on orbit, is preparing to deploy four more by 2014, said Chandler Smith, vice president of Com Dev USA, exactEarth's U.S. distributor.
For both companies, having more satellites on orbit is expected to yield better coverage.
PolarCube, which weighs about 4 kilograms, is being built by students at the University of Colorado in Boulder to study the Arctic's atmosphere and rapidly melting ice. The prototype spacecraft is expected to launch on a NASA rocket in late 2013 or early 2014 and have a design life of about a year, said geoscientist David Gallaher, technical services manager at the university's National Snow and Ice Data Center.
Gallaher hopes to eventually field a fleet of such spacecraft to provide real-time monitoring of the region, wh ere harsh weather and limited ground-based infrastructure can inhibit nonspace platforms.
SpaceQuest Ltd. of Fairfax, Va., is exploring the possibility of fielding small satellites to identify pollution sources in the Arctic. The region's sea-ice decline has opened the door to expanded shipping and oil and gas exploration, increasing the potential for harmful emissions into the air and sea, said Dino Lorenzini, the company's president.
The Arctic has vast amounts of untapped natural resources: 13 percent of the world's undiscovered oil, 30 percent of the undiscovered gas, and $2 trillion worth of gold, nickel, zinc and other minerals, said John Oliver, Coast Guard senior ocean policy adviser.
Martin Kress, executive director of the Von Braun Center for Science and Innovation in Huntsville, Ala., said he hopes to launch a 180-kilogram Arctic Region Communications Small Satellite, or ARC-Sat, to improve communications, search and rescue, data extraction and ship identification in the Arctic. The spacecraft would consist of a mothership and four cubesats flying in formation. The mothership is the size of a dishwasher and each cubesat is the size of a loaf of bread.
The polar region could also soon get a boost from the DoD-funded Arctic Collaborative Environment program, which integrates Arctic-focused remote sensing data into a Web-based tool. The program plans to conduct an operational demonstration in February, said Kress, whose center is part of the team.
Ошибка вышла :(
Не там запостил. Может, хоть последнее сообщение можно удалять будет, как на старом форуме?
http://boeing.mediaroom.com/index.php?s=43&item=2535
SENSE vehicles will validate nanosatellite use in military space
http://www.parabolicarc.com/2010/08/12/nasa-announces-cubesat-opportunity/cubesat/
ЦитироватьNASA Announces Fourth Round of CubeSat Space Mission Candidates
Posted by Doug Messier
on February 28, 2013, at 4:32 pm
(https://img.novosti-kosmonavtiki.ru/67103.jpg)
WASHINGTON (NASA PR) — NASA has sel ected 24 small satellites to fly as auxiliary payloads aboard rockets planned to launch in 2014, 2015 and 2016. The proposed CubeSats come from universities across the country, a Florida high school, several non-profit organizations and NASA field centers.
CubeSats belong to a class of research spacecraft called nanosatellites. The cube-shaped satellites measure about 4 inches on each side, have a volume of about 1 quart, and weigh less than 3 pounds.
The selections are fr om the fourth round of the CubeSat Launch Initiative. After launch, the satellites will conduct technology demonstrations, educational research or science missions. The selected CubeSats will be eligible for flight after final negotiations and an opportunity for flight becomes available.
The following organizations submitted winning satellite proposals:
The Aerospace Corporation, El Segundo, Calif.
The Discovery Museum and Planetarium, Bridgeport, Conn.
Embry-Riddle Aeronautical University, Prescott, Ariz.
Morehead State University, Morehead, Ky., in partnership with the University of California at Berkeley
Montana State University, Bozeman (2 CubeSats) in partnership with The University of New Hampshire, Durham
Merritt Island High School, Florida, in partnership with California Polytechnic State University, San Luis Obispo
NASA's Ames Research Center, Moffett Field, Calif.
NASA's Goddard Space Flight Center, Greenbelt, Md. (3 CubeSats)
NASA's Jet Propulsion Laboratory, Pasadena, Calif., in partnership with the California Institute of Technology, Pasadena (3 CubeSats)
NASA's Kennedy Space Center, Florida
Pennsylvania State University, in partnership with the Naval Research Laboratory, Monterey, Calif., and the Aerospace Corporation, El Segundo, Calif.
Saint Louis University, St. Louis
Tyvak Nano-Satellites Systems, Irvine, Calif., in partnership with the California Polytechnic State University, San Luis Obispo
University at Buffalo, The State University of New York
University of Colorado, Boulder
University of Florida, Gainesville, in partnership with Stanford University
University of Maryland, Baltimore County
University of Texas, Austin
Vanderbilt University, Nashville, Tenn., in partnership with the Radio Amateur Satellite Corporation, Silver Spring, Md.
In the three previous rounds of the CubeSat initiative, NASA has selected 63 missions for flight. The agency's Launch Services Program Educational Launch of Nanosatellite (ELaNa) Program has launched 12 CubeSat missions. This year, 22 CubeSat missions are scheduled for flight.
For additional information on NASA's CubeSat Launch Initiative program, visit:
http://go.nasa.gov/nXOuPI
http://www.aviationweek.com/Article.aspx?id=/article-xml/AW_04_01_2013_p60-560508.xml&p=2
ЦитироватьInternational Space Groundswell Draws New Entries
April 01, 2013
Frank Morring, Jr. Washington
...
Moving deeper into Earth orbit, with another nascent commercial-space app, is PLANETiQ, which is fund-raising to field a constellation of small commercial weather satellites that it hopes can attract some of the $6 billion the world's weather services spend collecting data for their forecasts each year.
"We represent a new model of public/private collaboration, in developing a network of small satellites for sustained and cost-effective rapid delivery of atmospheric data," says Anne Miglarese, the PLANETiQ president and CEO.
The concept involves 12 satellites weighing 75 kg (165 lb.) each, spaced around the globe. Using a technique called GPS Radio Occultation, which extracts temperature, pressure and humidity profiles from measurements of how much the atmosphere bends GPS signals as they pass through it, the company plans to market the data as a low-cost alternative to sounders and other weather-satellite instruments, with the fast-turnaround data delivery—3 min. after observation—particularly advantageous in tracking hurricanes as they approach landfall.
"I would argue that atmospheric data is moving in the same direction that brought us the plethora of imaging, both commercial and government, with the failure of the [National Reconnaissance Office's Future Imaging Architecture]," says Miglarese. "It was that burning platform that opened up the commercial opportunities for [Digital Globe] and GeoEye, and allowed them to thrive. We have a very similar situation with weather . . . with the serious delays and overruns that have occurred at NOAA [National Oceanic and Atmospheric Administration]; the same with the [Defense Meteorological Satellite Program] at the Air Force."
The Bethesda, Md.-based company is o't alone in hoping to build a commercial market for satellite weather data. GeoMetWatch Corp. already has started building a hyperspectral imager for weather applications that it hopes to fly as a hosted payload, and is on the verge of announcing an Asian-regional satellite as its host (AW&ST Feb. 25, p. 18 ) . Both companies are aiming to lower the cost of weather observation from orbit.
The first 12 PLANETiQ satellites will cost an estimated $155 million, including launch, Miglarese says. The satellites will also carry two instruments for monitoring damaging high-energy particles from solar storms, to help satellite operators protect their expensive birds from space weather.
Launches could begin 28-30 months after the start of manufacturing, Miglarese says, and it will cost at least $40 million for that to happen by the targeted July 1 date. While the needed technology is straightforward, financing is the real hurdle.
"We've been to two of the major finance houses," she says. "Both are very interested. But there are some very inherent risks for them, and those risks aren't about technology [or the] launch. The market clearly understands those risks, and can mitigate for them. The risk is in not having a proven market."
Other new-space startups are going after traditional markets, but in very untraditional ways. Like Columbus sailing off into the sunset to find spices that would fetch a fortune back home in Europe, some experienced space entrepreneurs are talking seriously about mining asteroids and the Moon for precious metals and water. The water can be broken down into oxygen and hydrogen for the propellant and life support that will be needed to exploit and explore space. The metals are precious for good reason.
"You will be hard-pressed to find a serious piece of microelectronics or structural support inside a human body that does not have a platinum-group element in it," says Eric Anderson, co-founder and co-chairman of Planetary Resources, an asteroid-mining startup.
Planetary Resources does not expect to find financial backing right away to race off to an asteroid and start digging. Instead, it has mapped a careful path of more and more capable spacecraft—starting with cubesat-based telescope prospectors to study potential targets—and it has a stable of dot-com billionaires willing to fund it, says Anderson. He cut his entrepreneurial teeth sending wealthy space tourists to the ISS on Russian Soyuz vehicles.
...
http://www.aviationweek.com/Article.aspx?id=/article-xml/AW_05_06_2013_p55-574477.xml&p=1
ЦитироватьSimplifying Hardware To Liberate Satellite Users
By Michael Mecham
Source: Aviation Week & Space Technology
(https://img.novosti-kosmonavtiki.ru/67256.jpg)
May 06, 2013
Credit: Pumpkin Inc.
Michael Mecham Moffett Field, Calif.
Спойлер
Inexpensive satellites little bigger than a Rubik's Cube have been the provenance of university and small research projects for more than a decade. Increasingly, innovations fr om the smartphone world are showing how these classroom projects can play outsized roles in space science.
The April 21 launch of three PhoneSats, built here at NASA Ames Research Center, is giving early promise to what can happen when common commercial products are tapped to drive down the design, development and integration costs of making spacecraft. The innovations include cannabilizing consumer products, scrounging for leftovers and using parts fr om online satellite catalogs.
David Korsmeyer, head of Ames's engineering directorate, says technology and manufacturing processes for very small satellites is maturing to the point wh ere they can become disruptive technologies for Earth observation, communications and deep-space exploration.
Interest in small satellite missions extends far beyond Ames. Innovation Foundry Manager Anthony Freeman at NASA's Jet Propulsion Laboratory says the most successful smallsat design, the 10 X 10 X 10-cm (roughly 4 X 4 X 4-in.) cubesat—the standard "1U" size—pioneered at the turn of the century, have come a long way. "For a long time, we've been in an elongated Sputnik era with peepers and squeakers, wh ere just getting into Earth orbit and getting a signal was counted a success. We're now at the Explorer 1 level," says Freeman, referring to the 1958 U.S. mission a year after Sputnik that detected the Van Allen radiation belt. "After that, things really took off."
Freeman emphasizes the dollars-and-cents rationale for using very small spacecraft for exploration. "If the discussion is at the $500 million [mission cost] level, that means a lot of asteroids we won't fly by," he says. "But if it is $2 million, then we can."
The Edison Demonstration of Smallsat Networks (EDSN), a cluster of eight 1.5U cubesats (10 X 10 X 15 cm) is set for launch from Kauai, Hawaii, in October. They will have overlapping orbits spread over 50-60 mi. and know each other's position with high precision so their measurements can be integrated with time and position stamps. "For [scientists], there are lots of measurements that benefit from being taken just minutes apart," says the chief technologist in Ames's mission design division, Elwood Agasid. EDSN will measure ocean temperatures and wave heights. "How fast can a storm grow?" he asks. Knowing the answer may prove useful in tsunami warnings, particularly in detecting killer waves from remote regions of the Pacific Ocean.
Three other EDSN-class technology missions are planned in the next three years. They will use cubesats no larger than 3U (10 X 10 X 30 cm) to verify: laser communications, low-cost radar and optical sensors to help smallsats maneuver near each other; higher-bandwidth radios that communicate with reflector antennas on the back of their solar arrays; and cubesat rendezvous and mechanical docking exercises.
The PhoneSats are similar to the Spheres free-flyer experiment already conducted in the International Space Station's Destiny lab, except the PhoneSats were deposited into orbit on the inaugural Orbital Sciences Corp. Antares launch. They will last only a few weeks in space because their orbit was 240 X 260 km (150 X 160 mi.). But in small packet bursts, they have communicated through a worldwide Ham Radio network and transmitted Earth images using smartphone technology, says Project Manager Jim Cockrell. Two PhoneSat 1s, which cost just $3,500 each, relied on Android HTC Nexus One smartphones and one $8,000 PhoneSat 2 used the more advanced Samsung Nexus S model.
The PhoneSat 1 used the phone's accelerometer and magnetometer but left its lithium-ion batteries at home because they are not suitable for the thermal shifts of working in space. Instead, the phones were snuggled diagonally into the cubesat surrounded by nickel-cadmium batteries that will barely last the length of the mission.
Although it is only a beta test model, PhoneSat 2 has greater capabilities. The Nexus uses gyroscopes so users can flip screens vertically or horizontally. Combined with a set of magna torque wheels little bigger than a man's thumb, they gave PhoneSat 2 three-axis stability, which the simpler PhoneSat 1 lacks. The Ames team simplified making mounts for the wheels with 3-D printing.
Solar cells for PhoneSat 2 came from edges discarded in Boeing Spectrolab's manufacturing process. Ames connected 20 of them on each side of the 10-cm cubesat and on the flip side built copper wire magna torque coils directly onto their PC board to save weight and space.
The point, says Korsmeyer, is to drive tailored original equipment manufacturing out of satellite-making as much as possible by adapting existing hardware. In the future, this will mean that programming the spacecraft is the biggest hurdle. "You have transformed a hardware problem into a software problem," he says.
Because cubesats operate in low Earth orbits (nominally 425-450 km/265-2,800 mi.), they are protected by the planet's magnetic field and do not face major radiation hardening issues. "We buy rad-hard commercial parts rather than space parts," Korsmeyer says, saving millions. He compares having to operate with occasional interference from radiation to having to reboot a PC. "Is that really a problem?" he asks.
Manufacturing for organizations that must tolerate problems or be priced out of existence is part of the smallsat culture, just as managing missions with part-time teams is. But there are payoffs to working in a Class D culture, NASA's minimum qualification standard. Bruce Yost, NASA's small technology mission director, says a "six-pack" of 3U nanosats can be built with only a third of their configuration reserved for spacecraft operations, leaving two-thirds for payload. The normal ratio is just the opposite.
Development work for very small satellites is flowing from companies such as San Francisco's Pumpkin Inc., which has an online catalog for a nanosat starter kit, although founder Andrew Kalman says International Traffic in Arms Regulations prevent fill-the-shopping cart ordering.
Started in 2004, Pumpkin is on its fifth generation of electronics. But its staff of fewer than 10 relies on specialty suppliers, such as San Francisco Bay Area machine shops that hold tolerances to 0.004 in. It used to spend 2 hr. per cell making solar panels but has cut that to just 12 min. by adapting Spectrolab cells. "Our focus has always been on how to crank out [satellites] quickly," Kalman says. He can deliver in as little as 90 days.
Despite the existence of Pumpkin and others like it, customers still need to know what they are doing. They must source their own control software, antennas (EDNS uses hardware-store retractable tape measures) and source cells.
Pumpkin is geared to producing large numbers of the same design, so government agencies such as Ames, JPL and the National Reconnaissance Office (NRO), and prime contractors of the likes of Boeing and Northrop Grumman are its natural customer base. A contract for 12 3U cubesats from the NRO in 2007 provided Pumpkin's big push. Called Colony 1, the order is intended to seed innovation by providing institutional design teams with basic hardware. Users, such as the University of Southern California, take it from there. The NRO's Colony 1 Aeneas mission is an experiment for the Homeland Security Department to track cargo containers over open oceans by interrogating a 1-watt Wi-Fi-like transceiver on the container.
Ames also is using an approach of combining modular units in a Common Bus to simplify satellite manufacturing on a bigger scale. The first application, the $263 million Lunar Atmosphere and Dust Environment Explorer (Ladee), is set for launch on a Minotaur V in late August or early September. Other proposals are not yet funded but illustrate the design's flexibility: an asteroid mission and a lunar robotic lander for the Google Lunar X-Prize competition.
While not in the cubesat you-build-it mode, the Common Bus draws on the same philosophy to reduce costs, says Project Manager Butler Hine. Its stackable modules are made lighter and stronger by being comprised of carbon composite formed into a single monocoque octagonal blank with titanium frame inserts that have no ribs. Stress points are reinforced with added plies, and common bolt patterns on top and bottom allow for easy stacking.
Ladee's top two modules carry the instruments—a laser communications experiment, neutral mass spectrometer, ultraviolet/visible spectrometer and lunar dust experiment—and satellite avionics and communications equipment, while the bottom units contain the propulsion system. The body has fixed solar panels, giving it a single safe mode, and its reaction wheels and reaction thrusters are off-the-shelf commercial satellite hardware.
Ames leads NASA's small satellite programs largely because its director, Pete Worden, is an evangelist for their cause. Besides the promise of simplified design and reduced mission costs, his broader vision is that they will become disruptive technologies. The obvious analogy is to the smartphone and Internet. Their ubiquitous presence has created a web of interconnected electronics that beg users to create applications, regardless of whether they understand the hardware behind them. But for such an idea to work in space, satellites need to be cheap enough that a failure would not stop the innovation clock for a decade.
Ames will launch 22 satellites this year, most as cubesats ejected from the space station. Others, weighing in at 20 kg. (44 lb.), are engineering efforts relying on off-the-shelf avionics and costing less than $1 million. "For a few million bucks, you can do really cool stuff in space," Worden says.
But the real revolution will come from what is done on the ground, although how it will be done is not yet clear. "The secret sauce of Silicon Valley is ferment," Worden says. "What I really want to do is have one kid in her garage who says, 'I have an idea and I'm going to write an app.'"
http://www.nasa.gov/centers/kennedy/pdf/749904main_may17-2013.pdf
(https://img.novosti-kosmonavtiki.ru/86271.jpg) (http://farm8.staticflickr.com/7304/8758257101_940eabe0cb_b.jpg)
(https://img.novosti-kosmonavtiki.ru/86272.jpg)
http://www.spacenews.com/article/civil-space/35980planet-labs-unveils-plan-to-launch-28-nanosats-on-antares-1st-cargo-run#.Uc009tiBXTo
ЦитироватьPlanet Labs Unveils Plan To Launch 28 Nanosats on Antares' 1st Cargo Run
By Debra Werner | Jun. 26, 2013
(http://www.spacenews.com/sites/spacenews.com/files/styles/large/public/images/articles/dove1_image_7.1.13.jpg) (http://www.spacenews.com/sites/spacenews.com/files/images/articles/dove1_image_7.1.13.jpg)
Sample image fr om Planet Labs' Dove-1 nanosatellite, which hitched a ride to orbit in April aboard the demo flight of Orbital Sciences Corp.'s Antares rocket. Credit: Planet Labs
SAN FRANCISCO — Planet Labs is seeking to revolutionize the Earth imaging industry with a constellation of 28 nanosatellites designed to offer frequent, low-cost images of any point on the globe. By providing high-resolution imagery, quickly and inexpensively, the company's founders hope to expand dramatically the customer base for Earth imagery and the use of that information to address humanitarian, environmental and business concerns.
Спойлер
"We are motivated to make information about the changing planet available to all people, especially the people who need it the most," said Robbie Schingler, co-founder of the company previously known as Cosmogia Inc. "The imagery could be used by anyone who cares about changes in land use over time."
After fending off media queries for months, executives of the San Francisco-based startup revealed plans June 26 to launch in December a constellation of 28 cubesats designed to provide imagery with a resolution of three to five meters. The constellation, known as Flock-1, is scheduled to fly on the first of eight Orbital Sciences Corp. cargo transportation flights to the international space station as part of NASA's Commercial Resupply Services program.
In 2012, Planet Labs raised $13 million in venture capital funding for its Earth-imaging constellation fr om investment firms, including Draper Fisher Jurvetson, Capricorn Investment Group, O'Reilly AlphaTech Ventures, Founders Fund's FF Angel, Innovation Endeavors, Data Collective and First Round Capital, company officials said.
Planet Labs founders, Schingler, William Marshall and Chris Boshuizen, are physicists and entrepreneurs who previously worked for NASA. Schingler served as the chief of staff in NASA's Office of the Chief Technologist from June 2010 to October 2011. Marshall and Boshuizen worked in the NASA Ames Research Center's small spacecraft office wh ere they helped to create PhoneSat, a project designed to test whether commercial smartphone components could be used in place of traditional space-qualified hardware.
Unlike PhoneSat, Planet Labs develops its own technology. However, company engineers draw on recent breakthroughs in commercial communications and computing technology. "We are trying to leverage the billions of dollars companies have spent miniaturizing electronics to advance satellite systems," Marshall said.
While much of the hardware Planet Labs plans to fly in its cubesat constellation does not have a lengthy spaceflight heritage, company executives said the constellation gains its resilience from its size. By design, it includes more satellites than necessary to provide global coverage.
The large size of Flock-1 also eliminates the need to task satellite cameras to obtain imagery of specific regions to satisfy customer demand. In the course of routine operations, Planet Labs will collect frequent imagery of latitudes within 52 degrees of the equator, an area that covers the vast majority the world's population and agricultural regions. Company officials declined to specify how frequently they plan to publish updated imagery.
Planet Labs officials are quick to point out that in spite of the large number of spacecraft they plan to launch, they are taking pains to ensure their cubesats do not aggravate the problem of space debris. "We factored this into our design from the first day," said Marshall, who conducted orbital debris research while working at NASA. "Our constellation flies very low and far away from congested areas in space. We have the ability to move to avoid a potential conjunction. And the satellites will disintegrate into the atmosphere in singles of years to avoid becoming space debris."
Flock-1 satellites are scheduled to occupy a 400-kilometer, circular orbit at an inclination of 52 degrees relative to the equator. That location allows onboard cameras to obtain higher resolution imagery and to transmit more data than would be possible if the miniature spacecraft operated in higher orbits, Schingler said.
Planet Labs currently has 33 full-time employees. The staff is comprised primarily of engineers who previously worked at NASA, Space Exploration Technologies Corp., Space Systems/Loral, United Technologies Corp.'s Pratt & Whitney Rocketdyne, Google Inc. and Facebook Inc., Schingler said.
Planet Labs launched in April its two first satellites, triple cubesats called Dove-1 and Dove-2, on technology demonstrations. Dove-2 launched April 19 on a Soyuz-2.1a rocket from Baikonur Cosmodrome in Kazakhstan. It rode into orbit as a secondary payload on the Bion-M1 biological experiment satellite. On April 21, Bion-M1 deployed the Dove-2 cubesat.
Also on April 21, Dove-1 traveled on the maiden flight of Orbital Science Corp.'s Antares rocket. Planet Labs contracted for the launch of Dove-1 and Dove-2 with Seattle-based Spaceflight Inc. Spaceflight integrated the payloads with Isipod cubesat deployers built by the Dutch firm Innovative Solutions in Space. Spaceflight worked with its partner Innovative Space Logistics BV of Delft, Netherlands, to launch the Dove-2 on a Soyuz rocket, said Spaceflight president and chief executive Jason Andrews.
Dove 1 re-entered Earth's atmosphere after a 6-day mission due to the low orbit of the Antares test flight. In spite of its short duration, company officials were pleased with the technology demonstration, Schingler said. The satellites "obtained beautiful imagery with beautiful resolution straight out of the box," Marshall added.
For example, Dove-1 obtained imagery of a forest in Portland, Ore., that was detailed enough to show the canopy of individual trees. When Planet Labs officials compared it with Google Earth imagery they saw an area wh ere logging had occurred.
Deforestation is one potential application for Planet Labs imagery. Customer interest will determine additional applications. The target audience extends far beyond "large companies and global information system experts" and includes individual Kenyan farmers trying to decide when to water or apply nutrients to their soil, Schingler said.
The image of Earth taken by Apollo 17 astronauts in 1972 known as the Blue Marble hangs in a prominent place in Planet Labs' office. The company's founders said the Earth imagery they intend to provide is designed to spur global action just as the Blue Marble image prompted greater global awareness. "By making regular imaging of the planet universally accessible, we will enable people to make better decisions," Marshall said.
In addition to Flock-1, Planet Labs is preparing to launch two additional technology demonstration missions. In September 2012, the company obtained a license from the U.S. National Oceanic and Atmospheric Administration to operate commercial, remote-sensing satellites Dove-3 and Dove-4. The two satellites, scheduled to launch later this year aboard a Russian-supplied Dnepr rocket, are designed to test technology and demonstration mission concepts.
http://www.parabolicarc.com/2013/07/20/nasa-picks-small-spacecraft-propulsion-systems-for-development/#more-49405
ЦитироватьNASA Picks Small Spacecraft Propulsion Systems for Development
Posted by Doug Messier
on July 20, 2013, at 4:58 pm in News
(http://a5812dc8bd9140d242e5-6a6d461ce122a15fb2cf3be7c57b2f08.r88.cf2.rackcdn.com/wp-content/uploads/2013/07/mep-thruster.jpg)
A laboratory model MEP thruster. (Credit: NASA)
HAMPTON, Va. (NASA PR) – NASA sel ected three proposals for the development of lightweight micro-thruster propulsion technologies that are small in size but have big potential.
NASA's Space Technology Mission Directorate selected the miniaturized electrospray propulsion technologies to perform stabilization, station keeping and pointing for small spacecraft. NASA hopes these technology demonstrations may lead to similar position control systems for larger spacecraft and satellites as well.
NASA's Game Changing Development Program, managed by the agency's Langley Research Center in Hampton, Va., sponsored this solicitation and will oversee the first phase of this technology development.
The three awards selected for contract negotiations are:
[/li]- "Microfluidic Electrospray Propulsion (MEP)," by NASA's Jet Propulsion Laboratory, Pasadena, Calif.
- "Miniature ElectroSpray Thrusters Based on Porous Surface Emission," by Busek Company, Inc., Natick, Mass.
- "Scalable ion Electrospray Propulsion System (S-iEPS)," by the Massachusetts Institute of Technology (MIT), Cambridge
Proposals for this solicitation were received fr om NASA centers, federally funded research and development centers, universities and industry. At least one electrospray technology will be selected for further development as an in-space flight demonstration through NASA's Small Spacecraft Technology Program during Phase II, which will be made through a separate solicitation.
One of NASA's priorities is to seek and develop new technologies that will radically change the capabilities for small satellites. There currently is a lack of efficient propulsion for a class of low cost, nanosatellite research spacecraft called "Cubesats," which measure about 4 inches on each side and weigh less than 3 pounds. The successful development and demonstration of these miniaturized systems will offer low mass, low-power propulsion for these small spacecraft and potentially revolutionize the future of Cubesats.
Miniaturized electrospray propulsion technologies also signal a revolutionary alternative for position control systems for larger satellites. Several studies have shown that micro-thrusters could replace currently accepted systems on large spacecraft, saving weight and space while significantly increasing mission reliability and lifetimes. This technology also could enable other game changing propulsion capabilities from micro-scale to large, deployable spacecraft structures.
For information about NASA's Game Changing Development Program, visit:
http://tinyurl.com/nwv442x (http://tinyurl.com/nwv442x)
NASA's Space Technology Mission Directorate is innovating, developing, testing and flying hardware for use in NASA's future missions. For more information about NASA's Space Technology Mission Directorate, visit:
http://www.nasa.gov/spacetech (http://www.nasa.gov/spacetech)
http://www.parabolicarc.com/2013/12/07/nasa-launches-exobrake-parachute-international-space-station/
ЦитироватьNASA Launches First Exo-Brake Parachute from International Space Station
Posted by Doug Messier on December 7, 2013, at 9:06 am in News
(https://img.novosti-kosmonavtiki.ru/90888.jpg) (http://www.parabolicarc.com/?attachment_id=50956)
TechEdSat-3p deploys from the Japanese Small Satellite Orbital Deployer aboard the International Space Station. (Credit: NASA)
MOUNTAIN VIEW, Calif. (NASA PR) — Mission controllers have confirmed that a small satellite launched from the International Space Station has successfully entered its orbit. Soon it will demonstrate two new technologies including an "exo-brake" device to demonstrate a new de-orbit technique as well as a communications system to provide precise information about the spacecraft's position.
The satellite, dubbed "TechEdSat-3p," arrived at the station aboard a Japanese H-II Transfer Vehicle Aug. 3. It was released at 2:58 a.m. EST Nov. 20, from the same Japanese Small Satellite Orbital Deployer aboard the station that launched its smaller predecessor – TechEdSat – in 2012.
"TechEdSat-3p will be the first nanosatellite of its size – a three unit cubesat – deployed from the International Space Station," said Marcus Murbach, the TechEdSat-3p principal investigator at NASA's Ames Research Center at Moffett Field, Calif.
(https://img.novosti-kosmonavtiki.ru/90889.jpg) (http://www.parabolicarc.com/?attachment_id=50957)
TechEdSat-3p deploys from the Japanese Small Satellite Orbital Deployer aboard the International Space Station. (Credit: NASA)
The International Space Station is converging science, technology and human innovation to demonstrate new technologies and make research breakthroughs not possible on Earth. Launching nanosatellites to test technologies necessary for deep space exploration is just one example of how the space station is being used to as a springboard to NASA's next great leap in exploration, including future missions to an asteroid and Mars.
The primary experiment onboard TechEdSat-3p is called the "exo-brake" and is a specially-designed braking device that operates at extremely low pressures and operates similar to a parachute. The exo-brake on TechEdSat-3p will be the first to perform a rapid de-orbit and re-entry from Earth's outer atmosphere. Engineers believe exo-brakes eventually will enable small samples to be returned from the station or other orbital platforms.
TechEdSat-3p also is equipped with a short-burst data modem provided by Iridium Communications Inc. of McLean, Va. The modem will be combined with a GPS receiver to perform communications functions including providing data about the spacecraft's health and the space environment.
(https://img.novosti-kosmonavtiki.ru/90890.jpg) (http://www.parabolicarc.com/?attachment_id=50958)
TechEdSat-3p in orbit. (Credit: NASA)
"TechEdSat-3p uses a completely new nanosatellite communication paradigm in that the Iridium and GPS orbiting spacecraft replace ground stations for tracking, rapid data retrieval and uplink capability," said Murbach. "Eventually, these technologies could be combined to provide another way to return cargo from the space station or other orbiting platforms."
TechEdSat-3p is the second satellite in the TechEdSat series to successfully achieve orbit. The TechEdSat series uses the cubesat standards established by the California Polytechnic State University in San Luis Obispo, that specifies nanosatellites in one unit (1U) increments of 10 cubic centimeters (approximately four cubic inches). TechEdSat-3p is a 3U satellite and weighs approximately five pounds.
Previously, the TechEdSat-1 – a 1U cubesat – successfully demonstrated the use of basic communications subsystem and a radiation-tolerant controller. It functioned in orbit for seven months until it re-entered Earth's atmosphere. This mission was followed by a successful Iridium system flight test in April during the maiden flight of Orbital Sciences' Antares-1 rocket.
"The satellite's structure, avionics and payload were custom-designed by the team to utilize the 3U volume most efficiently and provide ample space for the exo-brake deorbiter," said Murbach. "The hardware was mostly off-the-shelf components available to anyone – this makes it easier to reproduce and make adjustments for future flights."
For example, the TechEdSat-4 satellite, proposed for launch in 2014, will be very similar to the TechEdSat-3p design. It will develop further the exo-brake passive deorbiting system by adding drag-modulation for accurate de-orbit and eventual re-entry control. Future TechEdSats also will validate hardware for possible nanosatellite missions to the surface of Mars.
"This project uniquely pairs advanced university students with NASA researchers in a rapid design-to-flight experience," said Periklis Papadopoulos, TechEdSat co-investigator at San Jose State University in California. "It also provides a platform to test technologies for future NASA Earth and planetary missions, as well as providing students with an early exposure to flight hardware development and management."
TechEdSat-3p was developed, integrated and tested at Ames by student interns from San Jose State University and the University of Idaho. TechEdSat-3p is funded by Ames. The total cost in parts was less than $50,000 because the team primarily used only commercial off-the-shelf hardware and simplified the design and mission objectives.
For more information about NASA education programs, visit: http://www.nasa.gov/education (http://www.nasa.gov/education)
For more about Ames Research Center, visit: http://www.nasa.gov/ames (http://www.nasa.gov/ames)
http://www.spacenews.com/article/financial-report/39452ssl-to-build-13-imaging-satellites-for-skybox
ЦитироватьSSL To Build 13 Imaging Satellites for Skybox
By Peter B. de Selding | Feb. 10, 2014
(http://www.spacenews.com/sites/spacenews.com/files/styles/large/public/images/articles/SkySat1_BW4X3.jpg) (http://www.spacenews.com/sites/spacenews.com/files/images/articles/SkySat1_BW4X3.jpg)
Under the contract, whose financial terms were not disclosed, SSL will build 13 120-kilogram Skybox satellites using a Skybox design for which SSL has been given an exclusive license. Credit: Business Wire photo
PARIS — Satellite manufacturer Space Systems/Loral (SSL) will build 13 small high-resolution Earth observation spacecraft for Skybox Imaging under a contract announced Feb. 10.
The deal is a sharp departure for Palo Alto, Calif.-based SSL, whose bread-and-butter products are large, high-power telecommunications satellites for commercial television and data transmission.
Under the contract, whose financial terms were not disclosed, SSL will build 13 120-kilogram Skybox satellites using a Skybox design for which SSL has been given an exclusive license. The spacecraft will be launched in 2015 and 2016, SSL said.
Mountain View, Calif.-based Skybox has one satellite, dubbed SkySat-1, in orbit. Its business plan is to deploy a constellation in low Earth orbit capable of revisiting a given plot of ground three times per day.
This revisit will be possible once the 13 SSL-built satellites are operational. Skybox has said it ultimately plans a 24-satellite constellation.
Skybox's current satellite has a 90-centimeter resolution in black-and-white mode when the satellite is looking straight down, with an 8-kilometer swath width. Resolution, which refers to the size of objects that can be detected in an image, is 2 meters in color mode. SSL said the satellites it is building will have a resolution, also known as ground sampling distance, sharper than 1 meter even in color mode.
One of Skybox's selling features — the company has been successful in raising capital from private investors in several rounds of financing — has been its promise to offer up to 90 seconds of high-definition video at 30 frames per second.
SSL officials have said that the company's November 2012 purchase by MDA Corp. of Canada would help broaden the scope of SSL's business beyond large commercial telecommunications satellites.
"This contract award ... is tangible evidence of our success in working with MDA to expand into new markets," SSL Chief Executive John Celli said in a statement. "We are developing new capabilities that will enable us to pursue other Earth observation and [low-Earth orbit] satellite opportunities in the U.S. and abroad."
Michael Trela, Skybox vice president for satellite systems, said the launch of SkySat-1 in November, and its successful performance since then, "validated our high-performance imaging satellite design and economics. By partnering with SSL, we can leverage their unique production capabilities to scale with greater cost-efficiency and speed while allowing us to focus on prototyping next-generation systems to better serve our customers."
Follow Peter on Twitter: @pbdes (http://twitter.com/pbdes)
http://www.spacenews.com/article/civil-space/39459planet-labs-cubesats-deployed-from-iss-with-many-more-to-follow
ЦитироватьPlanet Labs Cubesats Deployed from ISS with Many More To Follow
By Debra Werner | Feb. 11, 2014
(http://www.spacenews.com/sites/spacenews.com/files/styles/large/public/images/articles/NRCSD_NASA4X3_0.jpg) (http://www.spacenews.com/sites/spacenews.com/files/images/articles/NRCSD_NASA4X3_0.jpg)
The image of a Planet Labs cubesat being released from the station can be seen in the lower right-hand corner. Credit: NASA photo
SAN FRANCISCO — Japanese astronaut Koichi Wakata sent four Earth imaging cubesats built by San Francisco-based Planet Labs out of the international space station's Kibo module in what is expected to become a steady stream of miniature satellites ejected from the orbiting outpost.
The four satellites launched Feb. 11 are destined for Planet Labs' 28-spacecraft Flock-1 Earth observing constellation. With help from NanoRacks LLC, the Houston-based space services provider that arranged flights for the satellites to the space station on Orbital Sciences Corp.'s Cygnus cargo mission in January and helped pave the way for their recent launch through the Japanese module, Planets Labs plans to deploy the entire constellation within weeks.
Since NASA published images in October 2012 of the first five cubesats launched from the international space station, cubesats developers in industry and academia have expressed keen interest in traveling the same path into orbit. While some scientists are reluctant to fly from the space station, saying an altitude of 400 kilometers is too low, many other cubesat builders are eager to reach orbit as quickly as possible.
ЦитироватьPlanet Labs @planetlabs
Follow
The first of our Flock 1 take to space from ISS at 12:15 am. We're already feeling the empty nest. Watch live here: http://m.ustream.tv/channel/live-iss-stream ...
6:39 AM - 11 Feb 2014
"Without an on-board propulsion system, the [satellites' lives] will be fairly limited," said Chris Boshuizen, Planet Labs chief technology officer. "Our [business] model is based on our ability to mass-produce satellites. Instead of building a more sophisticated satellite with a 10-year lifetime, we chose to build a much simpler spacecraft with a design life of a couple of years and replenish the constellation."
Cubesat missions seeking rides into space as secondary payload often wait years. In contrast, NanoRacks can send small satellites to the space station on U.S., Russian or Japanese launch vehicles in nine months on average, said NanoRacks Managing Director Jeffrey Manber. NanoRacks has signed contracts to launch more 50 cubesats from the space station and memoranda of understanding for 100 more, Manber said. "We're booked for cubesat launches for the next couple of years," Manber said.
Jason Dunne, co-founder of Made in Space, the company preparing to send a 3D printer to the international space station later this year, said the orbiting outpost may become Grand Central Station for cubesat launches. Made in Space is working with NASA to determine whether cubesats also could be built on the orbiting outpost using additive manufacturing.
To meet the demand for cubesat launches from the space station, NanoRacks invested its own money in developing a commercial cubesat deployment system designed to hold six of the small spacecraft. The NanoRacks deployers can be stacked in a manner that enables eight of them, for a total of 48 cubesats, to fit on a single pallet aboard Kibo, also known as the Japanese Multi-Purpose Experiment Platform. With the help of the Japanese slide table and robotic arm, astronauts can launch the cubesats in groups of approximately six every one to two orbits to prevent collisions.
Comments: werner.debra@gmail.com
http://spacenews.com/article/financial-report/41532small-satellite-entrepreneurs-suppliers-part-ways-on-pricing
ЦитироватьSmall-satellite Entrepreneurs, Suppliers Part Ways on Pricing
By Debra Werner | Aug. 8, 2014
(http://spacenews.com/sites/spacenews.com/files/styles/large/public/images/articles/LauncherOne_VG4X3_0.jpg) (http://spacenews.com/sites/spacenews.com/files/images/articles/LauncherOne_VG4X3_0.jpg)
Virgin Galactic's LauncherOne. Credit: Virgin Galactic artist's concept
LOGAN, Utah — The small-satellite industry is transforming as suppliers who previously focused on providing products and services for individual spacecraft look for ways to profit from the growing number of constellations. There is a mismatch, however, between what many traditional firms are offering and what the entrepreneurs establishing large cubesat constellations are seeking to buy.
"The prices are way too high," said an entrepreneur attending the annual Small Satellite Conference Aug. 2-7 at Utah State University here. "We would be willing to buy parts but not at these prices."
Like Space Exploration Technologies Corp., many of the new space entrepreneurs are building their own spaceflight hardware or using commercially available parts to reduce the cost of individual items and gain the flexibility to quickly adopt new technology. Planet Labs, the San Francisco-based firm building a 100-spacecraft Earth imaging constellation to provide daily global coverage, revises its cubesat design every eight to 10 weeks, said Chris Boshuizen, the firm's chief technology officer.
Steve Jurvetson, managing director of DFJ, the Menlo Park, California-based venture capital firm that backed SpaceX and Planet Labs, lauds that approach, which he refers to as "agile aerospace." "It is increasingly possible for an entrepreneurial company to innovate, iterate and run circles around its competition," Jurvetson said during the conference keynote speech. That is the type of company that will attract investors, he added.
Venture capital is pouring into some small-satellite startups. In October, Dauria Aerospace of Mountain View, California, and Skolkovo, Russia, announced a $20 million investment from I2BF Global Ventures. Planet Labs raised $52 million in a capital campaign led by Yuri Milner that concluded in December. Spire, the San Francisco-based company previously known as NanoSatisfi, announced July 29 that RRE Ventures helped it raised $25 million.
In spite of their financial wherewithal, many of the entrepreneurs who plan to sell images or data captured in space to cost-conscious commercial customers say they need to keep hardware, software and operation expenses as low as possible. That business model presents significant challenges for some traditional satellite suppliers who structured their businesses around the need to meet the unique requirements of small satellites built for U.S. government agencies and universities.
While commercial customers purchased less than 10 percent of the satellites weighing 1 to 50 kilograms from 2009 to 2013, those customers are likely to dominate the business from 2014 to 2016, according to a market analysis performed by Atlanta-based SpaceWorks Enterprises Inc. That trend is likely to continue with commercial firms outspending government agencies and academic institutions, said Elizabeth Buchen, director of SpaceWorks' engineering economics group.
"This huge influx of commercial niche missions providing Earth observation, targeted communications or Internet access through satellite networks is an entirely new business model," said Robert Meurer, business development vice president for ATK Space Systems. "The space industry was dominated by the government for a long time. Commercial customers can easily outspend and outgrow the government over time."
SpaceWorks notes a flurry of activity by companies building and launching satellites weighing 1 to 50 kilograms. The firm expects 140 spacecraft of that size to launch in 2014 compared with 92 in 2013. Steady growth of the market will lead to a total of 2,000 to 2,750 small spacecraft seeking launches from 2014 through 2020, Buchen said.
It is not yet clear how those satellites will reach orbit. "Access to space remains quite a challenge," Meurer said. Many firms have announced plans to develop new launch vehicles to meet the needs of this growing market, including Virgin Galactic's LauncherOne, Generation Orbit's GOLauncher 2, Interorbital Systems' Neptune, Rocket Lab's Electron, Garvey Spacecraft Corp.'s Nanosat Launch Vehicle and XCOR Aerospace's Lynx Mark 3. None of the new rockets is operational. Whoever succeeds in offering space access at a reasonable cost "will receive a very warm reception because there will be any number of payloads waiting to go," Meurer said.
This year, 1,400 people attended the Small Satellite Conference, which began 28 years ago with 400 attendees. Longtime conference participants were thrilled by the growth of their industry and enthusiastic about the potential for small satellites wielding increasingly capable sensors to improve weather prediction on Earth and in space, bolster agricultural yields and extend communication services globally.
"We have talked about the market developing for small satellites since the first conference," Meurer said. "Year after year, we waited for this groundswell, which we are now seeing. It's very satisfying."
http://spacenews.com/article/civil-space/41549cubesats-driving-big-developments-in-small-propulsion-systems
ЦитироватьCubesats Driving Big Developments in Small Propulsion Systems
By Debra Werner | Aug. 11, 2014
(http://spacenews.com/sites/spacenews.com/files/styles/large/public/images/articles/6kwHallEffectThruster_JPL4X3.jpg) (http://spacenews.com/sites/spacenews.com/files/images/articles/6kwHallEffectThruster_JPL4X3.jpg)
NASA is exploring a wide range of propulsion technologies to enable cubesats to change altitude, conduct proximity operations, disperse and form arrays, including cold gas, monopropellant, liquefied gas, solid rocket, Hall effect (a 6 kilowatt Hall-effect thruster) and electrospray thrusters. Credit: NASA Jet Propulsion Laboratory photo
LOGAN, Utah — As cubesats prove their ability to capture imagery and gather scientific data, developers are eager to send the miniature spacecraft on increasingly complex missions, many of which require propulsion.
"With any satellite there's a lot of mission capability you can get when you're able to maneuver," said Andrew Petro, NASA's Small Spacecraft Technology program executive. "We are trying to do more things with these satellites and that requires mobility."
NASA is exploring a wide range of propulsion technologies to enable cubesats to change altitude, conduct proximity operations, disperse and form arrays, including cold gas, monopropellant, liquefied gas, solid rocket, Hall effect and electrospray thrusters. "We want to cast a wide net," Petro said. "We are not looking for one solution, but for a whole set of solutions."
NASA's Optical Communications and Sensor Demonstration, slated for launch in 2015 as part of NASA's Cubesat Launch Initiative, is to use cold gas thrusters to enable two 1.5-unit cubesats to maneuver and operate to within 200 meters of each other. NASA's Small Spacecraft Technology Program has earmarked about $3.5 million over two years for the project led by the Aerospace Corp. of El Segundo, California.
The Small Spacecraft Technology Program is providing approximately $13.5 million over three years for a related effort, Cubesat Proximity Operations Demonstration. For that mission, Tyvak Nano-Satellite Systems of Irvine, California, is developing two three-unit cubesats to rendezvous, conduct proximity operations and dock with one another with the help of cold gas propulsion.
Aerojet Rocketdyne is developing liquid propulsion systems for cubesats, including MPS-100 Cubesat High-impulse Adaptable Modular Propulsion System (CHAMPS), a miniature hydrazine thruster designed to provide a change in velocity of more than 200 meters per second, and MPS-120 CHAMPS, a version that uses additive manufacturing to produce the piston propellant tank and miniature isolation system.
In August 2013, NASA's Small Spacecraft Technology Program sel ected MPS-120 as one of 10 payloads for space agency-supported development. Through the project, Aerojet plans to conduct the first flight of that hydrazine-fueled engine, which it produced with additive manufacturing. "All the plumbing and a lot of the features are printed right into the tank," said Christian Carpenter, MPS-120 principal investigator for Aerojet Rocketdyne in Redmond, Washington. "This will not only be the first test of a liquid system at this size scale but also the first test of a 3-D printed liquid system and pressurized tank."
The MPS-120 project is designed to demonstrate that hydrazine can be safely handled and stored on cubesats. "Just like large satellites, cubesats eventually will fly pressurized systems with liquid propellants," Carpenter said.
Busek Co. Inc. plans to demonstrate the use of an iodine-fueled Hall effect thruster on Iodine Satellite, a 12-unit cubesat scheduled for launch in 2017 by NASA Marshall Space Flight Center in Huntsville, Alabama. "The advantages of iodine is that it has three times the propulsive energy per liter as xenon," Dan Williams, Busek business development director, said by email. In addition, Busek is developing propulsion systems based on electrospray, micro-RF ion, ammonia-fueled micro-resistojet, green monopropellant and micro-pulsed plasma thrusters.
In the past, cubesats did not include onboard propulsion because it would disqualify them from piggybacking on government flights. Now, some cubesat developers are obtaining waivers fr om those rules, allowing them to begin to experiment with miniature propulsion systems. "We are very interested in finding less-hazardous propulsion systems because if you are trying to fly as a secondary, you may be very limited in what the primary mission will allow you to carry," Petro said. "Keeping the propulsion safe and simple is especially valuable when you've got a low-cost project to begin with and you want to keep it that way."
И что?
Smartphone Advances Drive Smallsats
Developments in consumer electronics are shaping fast small-satellite production
http://aviationweek.com/space/smartphone-advances-drive-smallsats
ЦитироватьDed пишет:
И что?
А ничо.
http://www.militaryaerospace.com/articles/2014/10/quantum-kestrel-eye.html
ЦитироватьArmy taps Quantum Research to build imaging nano-satellites for front-line warfighters
October 2, 2014
By John Keller Editor
(https://img.novosti-kosmonavtiki.ru/231167.jpg)
PETERSON AIR FORCE BASE, Colo., 2 Oct. 2014. U.S. Army strategic reconnaissance experts needed an imaging satellite company to build small satellites to provide deployed warfighters (http://www.militaryaerospace.com/articles/2012/09/sync-think-eye-trac.html) with real-time intelligence, surveillance, and reconnaissance imagery. They found their solution from Quantum Research International, Inc. in Huntsville, Ala.
Officials of the Army Strategic Command at Peterson Air Force Base, Colo., announced their intention this week to award a contract worth about $8.5 million to Quantum Research to build and demonstrate Kestrel Eye satellite technology and ground-control equipment.
The Kestrel Eye Visible Imagery Nanosatellite Technology Demonstration program seeks to develop a small, low-cost, visible imagery satellite demonstrator that offers Army warfighters with on-demand real-time satellite imagery (http://www.militaryaerospace.com/blogs/aerospace-defense-blog/2013/07/are-costs-and-vulnerabilities-making-military-leaders-nervous-about-satellite-communications.html).
Related: Raytheon to help develop small satellites to give persistent-surveillance data to the front lines (http://www.militaryaerospace.com/articles/2012/12/raytheon-darpa-seeme.html)
The Kestrel Eye electro-optical nano-satellite will be able to produce images of 1.5-meter resolution that can be downlinked to front-line warfighters. The idea is to demonstrate a tactical nanosat that could be built in large numbers to provide persistent-surveillance capability to ground forces.
Army officials would like the capability to produce high-resolution satellite images and downlink them to front-line warfighters within 10 minutes.
The Kestrel Eye program will extend the unmanned aerial vehicle (UAV) paradigm into space, Army officials say. The eventual goal is to provide persistent coverage to every soldier on a hand-held device about the size of today's GPS receivers. The idea is to enable soldiers to click on any point of the ground displayed on a world map and call up real-time imagery of the area.
Related: Aerospace and defense firms advance the state of the art in acquiring, processing, and exploiting crucial still imagery and full-motion video (http://www.militaryaerospace.com/articles/print/volume-23/issue-05/special-report/geospatial-imagery-is-essential.html)
The upcoming contract to Quantum Research will ask the company to complete Kestrel Eye satellites that are under development, and provide satellite demonstration and support.
The Kestrel Eye reconnaissance satellite program is part of a larger initiative called Concepts and Operations for Space and Missile Defense Integration and Capabilities (COSMIC), which Quantum Research and BAE Systems are contractors.
More information on the Kestrel Eye program and the upcoming contract to quantum Research is online at https://www.fbo.gov/notices/92289bec2f10558f90130a7815da3797 (http://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=92289bec2f10558f90130a7815da3797).
For additional information contact Quantum Research International online at www.quantum-intl.com (http://www.quantum-intl.com/index.html), or the Army Strategic Command at www.army.mil/info/organization/unitsandcommands/commandstructure/smdc (http://www.army.mil/info/organization/unitsandcommands/commandstructure/smdc/).
http://spaceref.com/news/viewpr.html?pid=44167
ЦитироватьTyvak Nano-Satellite Systems Progress on CubeSat Proximity Operations Demonstration
Press Release Source: Tyvak Nano-Satellite Systems (http://www.tyvak.com)
Posted Sunday, October 12, 2014
Tyvak Nano-Satellite Systems, Inc., the industry leader in nano-satellites and turnkey SmallSat solutions, today announced that it successfully completed the development of the Cubesat Proximity Operations Demonstration (CPOD) vehicles and has officially received the approval to continue into the Vehicle Assembly Integration and Testing (AI&T) Phase.
The Cubesat Proximity Operations Demonstration (CPOD) mission will demonstrate rendezvous, proximity operations and docking using two three-unit (3U) cubesats. This mission will validate and characterize several miniature, low-power avionics technologies applicable to future NASA projects. The CPOD project is led by Tyvak Nano-Satellite Systems, Inc. of Irvine, California with funding from NASA's Small Spacecraft Technology Program.
After undergoing multiple rigorous program reviews, the management team of the Small Spacecraft Technology Program (SSTP) at Ames Research Center, Moffett Field, Calif., determined that the Tyvak's team is actively retiring all the foreseeable risks and is demonstrating the required technical and programmatic capabilities to successfully complete this phase of the project. SSTP managers also recognized that with Tyvak's continued success, the team will be in an excellent position to proceed with the final phase of the project leading to the on-orbit operations.
"We are grateful for the support and trust that NASA has given us throughout the project's development." said Dr. Marco Villa, Tyvak's President and Chief Operating Officer. "Tyvak has established itself as a leader in the NanoSatellite segment by recognition of its advanced technical capabilities," Dr. Villa added, "but it is great to also be acknowledged for our attentiveness and diligence towards program management and mission assurance. Surely this wouldn't be possible if it weren't for our outstanding engineering team and our invaluable partners 406 Aerospace, Applied Defense Solutions, and VACCO Industries. "
With responsibility over the entire mission, from subsystems' design to operations, Tyvak announced to be still on-track with the original schedule, and to expect a full vehicle integrated by the end of the year with Flight Readiness Review as early as May 2015.Спойлер
For more information about CPOD, go to http://www.nasa.gov/directorates/spacetech/small_spacecraft/cpod_project.html (http://www.nasa.gov/directorates/spacetech/small_spacecraft/cpod_project.html).
About Tyvak: Tyvak Nano-Satellite Systems Inc. provides turnkey solutions for SmallSat customers, from innovations to operations, making space research and utilization more accessible today than it has ever been. Tyvak can handle all your satellite needs from design and build, to test, launch and operations. With decades of experience in all sectors of the industry, the Tyvak team is unmatched in the small satellite industry. Engineers work with clients to shrink payload specifications, enabling more cost-effective development and transport to orbit. Tyvak systems are adaptable, have low power consumption and are easily customizable to support multiple applications. For more information, go to www.tyvak.com (http://www.tyvak.com).
The Cubesat Proximity Operations Demonstration (CPOD) mission will demonstrate rendezvous, proximity operations and docking using two three-unit (3U) cubesats. This mission will validate and characterize several miniature, low-power avionics technologies applicable to future NASA projects. The CPOD project is led by Tyvak Nano-Satellite Systems, LLC of Irvine, California with funding from NASA's Small Spacecraft Technology Program. The three-year project was initiated in November 2012.
Each of the satellites has dimensions of 10 by 10 by 33 centimeters and has a mass of about 5 kilograms. The satellites also have deployable solar panels.
CPOD will demonstrate the ability of two small spacecraft to remain at determined points relative to each other (called station-keeping) as well as precision circumnavigation and docking using imaging sensors and a multi-thruster cold gas propulsion system. Docking will employ a novel universal docking mechanism.
The ability of satellites to operate in close proximity to each other is an important capability to enable on-orbit inspection and servicing of satellites and to allow multiple satellites to operate together in space and even join to form a larger spacecraft or orbiting systems. This capability would also apply to a spacecraft maneuvering near an asteroid or other body on a science or exploration mission. Building these capabilities into very small spacecraft is an especially difficult challenge and advancement in this field will make some complex space missions more affordable.
After launch, the two cubesats will be released simultaneously into a common orbit and undergo checkout to ensure proper operation and maneuvering capability. Each satellite will use its space-to-ground data link to transmit visual images of the other satellite. An inter-satellite link will share GPS and other data between the two spacecraft. Many of the proximity operations test scenarios will be performed autonomously using on-board processors and flight software for guidance, navigation and control.
Using on-board navigation systems, one cubesat will perform a series of circumnavigation maneuvers relative to the second cubesat in order to validate and characterize the sensor systems. After completing these maneuvers the two spacecraft will approach and dock using a unique mechanism to join the satellites together. Several docking maneuvers may be attempted during the mission.
The CPOD mission was selected for a flight opportunity as part of the NASA Cubesat Launch Initiative. The two CPOD spacecraft will be launched to low Earth orbit and deployed on a rideshare mission arranged by the Launch Services Program. The satellites are expected to be ready to launch in 2015.
Partners with Tyvak Nano-Satellite Systems on the CPOD project include Applied Defense Solutions Inc. of Columbia, Maryland, 406 Aerospace LLC of Bozeman, Montana, and California Polytechnic State University, San Luis Obispo.
ЦитироватьElon Musk
SpaceX is still in the early stages of developing advanced micro-satellites operating in large formations. Announcement in 2 to 3 months.
http://spacenews.com/smallsat-developer-spire-entering-commercial-weather-biz/
ЦитироватьSmallsat Developer Spire To Enter Commercial Weather Market
by Jeff Foust (http://spacenews.com/author/jeff-foust/) — January 29, 2015
(https://img.novosti-kosmonavtiki.ru/155398.jpg)
Spire, which describes itself as "a satellite-powered data company," says its set to begin deploying a constellation of cubesat-based satellites later this year. Credit: Spire image
WASHINGTON — A San Francisco-based developer of nanosatellites announced Jan. 29 that it plans to start deploying a constellation of spacecraft by the end of this year to collect weather data for government and commercial customers.
Spire said that it believes its constellation of cubesat-class satellites, which will eventually exceed 100 spacecraft, will provide data that will greatly improve the accuracy of weather forecasts.
"We are right now with weather forecasting where we were with finding directions 10 years ago," said Spire chief executive officer Peter Platzer in a Jan. 27 interview. Just as online mapping services made getting directions easier and more reliable, he said he hopes his satellites' data will do the same for weather.
(https://img.novosti-kosmonavtiki.ru/155395.jpg) (http://spacenews.com/wp-content/uploads/2015/01/Powersat3.jpg)
Spire plans to use "3U" cubesats to provide the weather data. Credit: Spire
Spire plans to provide this data by measuring signals from GPS satellites as those signals pass through the atmosphere. This technique, known as GPS radio occultation, provides profiles of temperature, pressure, and humidity in the atmosphere that can be incorporated into weather forecasting models.
"GPS radio occultation is the bread-and-butter of short-term weather forecasting," Platzer said.
The company is not the first to consider using GPS radio occultation to provide weather data. A satellite system called the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), jointly developed and operated by the United States and Taiwan, currently provides GPS radio occultation data, with a follow-on system, COSMIC-2, under development. Other companies, including GeoOptics and PlanetiQ, have also proposed satellite systems to provide this data commercially.
Spire plans to use "3U" cubesats, measuring about 30 centimeters long and weighing a few kilograms, to provide the data, making its satellites considerably smaller than the COSMIC spacecraft or those planned by other companies. Spire's spacecraft will fly as secondary payloads on launches starting in October, with 20 scheduled for launch into low Earth orbit by the end of 2015.
The company will expand the system to more than 100 satellites over the next two and a half years, Platzer said. The company then plans to continuously refresh the constellation with more advanced spacecraft, replacing about one quarter of the satellites on orbit every six months. He said the company is also developing a network of 20 ground stations to receive data from the satellites.
"Rather than talking about stuff, we are building and launching stuff," Platzer said when asked how his company differs from others in the commercial weather market, who have yet to launch any satellites.
One obstacle companies in the commercial weather market have encountered is winning customers. Platzer said Spire has signed up a dozen government and commercial customers, in the United States and other countries, but declined to identify them. The company will start by selling data, he said, but may later also offer value-added services based on that weather data.
Spire, previously known as Nanosatisfi, raised $25 million in venture capital in July 2014. At that time, the company said it was developing "high frequency, high accuracy" remote sensing systems focused on maritime markets. Platzer said Spire is fully funded through the deployment of its constellation.
http://www.spaceflightinsider.com/missions/iss/nano-satellite-launched-space-station-tests-space-brake/
ЦитироватьNano-satellite launched from space station tests space brake
(https://img.novosti-kosmonavtiki.ru/234620.jpg)
Graphic rendering of TechEdSat–4 with exo-brake deployed. Exo-brake is an aerodynamic specially-designed parachute-like device, that causes the satellite to de–orbit and re–enter Earth's atmosphere. Image and Caption Credit: NASA.
Josh Tallis
March 5th, 2015
On the afternoon on March 3, the International Space Station deployed a small satellite using its Nanoracks CubeSat Deployer, the first NASA satellite to be thus ejected. TechEdSat-4 (http://www.nasa.gov/mission_pages/station/research/experiments/1027.html), as the payload is named, is designed to test new space brake technologies to facilitate the rapid return of payloads to Earth.
Deploying what NASA terms a "second-generation exo-brake," essentially a fancy parachute designed to produce drag, a payload can be induced to de-orbit faster than other maneuvers can affect. The principal investigator for the project, Marcus Murbach, explains the technology in a recent NASA release (http://www.nasa.gov/ames/nasa-deploys-satellite-designed-to-re-enter-atmosphere-using-revamped-drag-device/#.VPjGSsaprzK):
(https://img.novosti-kosmonavtiki.ru/234621.jpg)
The TechEdSat series, a technology education collaboration with San Jose State University and the University of Idaho, uses the standard CubeSat structure, which measures one unit (1U) as approximately four inches cubed (10 centimeters cubed). TechEdSat-4 is a 3U satellite. Image and Caption Credit: NASA.
"The exo-brake is a self-stabilizing exospheric deorbiting mechanism that will allow us to return a payload to Earth fairly rapidly from an orbital platform, like the International Space Station," said Murbach, program manager at Ames Research Center in Moffett Field, California.
Murbach continued, "We were able to send commands and receive data to and from the satellite via the onboard modem using only a laptop and email account. This capability may greatly benefit the entire nanosatellite community."
Two and a half hours after initial launch, the small satellite received a command via email to deploy its exo-brake, which is capable of producing drag in the very low-pressure environment of low-Earth orbit.
The satellite's capacity to receive commands over email is equally significant, part of a suite of communications packages designed to replace the need for ground stations to monitor the health and status of orbiting payloads.
NASA hopes that this technology will not only enable cheaper return of material from orbit, which is currently performed by larger and heavier (and thus more expensive) crafts such as SpaceX's Dragon capsule, but also provide a template for small-scale missions to the surface of other planets. As Murbach explained in the NASA release,
"We've already developed a sample canister that during atmospheric re-entry could slip out the back of the satellite and safely be recovered on Earth. This could also be adapted to future Mars satellites as a piggy-back or ride-along payload that could jettison independently and study the mid-latitude or other scientifically interesting regions of Mars. Currently, it is extremely challenging to access these sites."
TechEdSat-4 is part of a partnership between San Jose State University and the University of Idaho. The satellite, the fourth successful installment, measures 12x4x4 inches (30x10x10 centimeters) and weighs about five pounds. The series has been undergoing orbital tests since 2012 when TechEdSat-1 demonstrated the model's basic communications capabilities. TechEdSat-5 is scheduled for launch later this year. The model will be roughly comparable to the fourth edition but will feature a more maneuverable exo-brake.
http://youtu.be/divk-K1l7zM (http://youtu.be/divk-K1l7zM)
Video courtesy of NASA
http://tass.ru/kosmos/3768255
ЦитироватьNASA приступает к запуску 24 небольших спутников дистанционного зондирования Земли
9 ноября, 8:21 UTC+3
Первый старт запланирован на 11 ноября на базе ВВС США Ванденберг
(https://img.novosti-kosmonavtiki.ru/133249.jpg)
© EPA/NASA
ВАШИНГТОН, 9 ноября. /Корр. ТАСС Дмитрий Кирсанов/. Национальное управление США по аэронавтике и исследованию космического пространства (NASA) приступает к реализации целого ряда научных миссий дистанционного зондирования Земли, которые предусматривают вывод на орбиту в общей сложности 24 небольших спутников. Об этом сообщил во вторник корр. ТАСС официальный представитель NASA Стив Коул.
Как отметил научный директорат NASA, речь идет о "шести миссиях следующего поколения по наблюдению за Землей", в ходе которых будут применяться "инновационные подходы" к изучению изменений, в первую очередь климатических, происходящих на нашей планете, в том числе при помощи микроспутников. Во исполнение намеченных замыслов американские специалисты готовят к отправке в космос аппараты, самый маленький из которых по размеру равен буханке хлеба, а самый большой - стиральной машине. Их вес варьируется от килограмма с небольшим до 180 кг. Запуск этих аппаратов в космос, как ожидается, растянется более чем на три года, пояснил Коул.
По его словам, первый такой старт запланирован уже на ближайшую пятницу - 11 ноября - на базе ВВС США Ванденберг (штат Калифорния). В этот день должен произойти вывод в космос спутника в интересах компании DigitalGlobe при помощи носителя Atlas V. Пользуясь этой возможностью, NASA хочет вывести на орбиту и небольшой радиометрический прибор, работа которого призвана помочь лучше понять воздействие парниковых газов на глобальное изменение климата. Небольшой спутник, несущий этот научный инструмент, станет вторичной нагрузкой ракеты-носителя Atlas V.
Затем 12 декабря с космодрома на мысе Канаверал (штат Флорида) предполагается отправить на орбиту сразу восемь спутников, которые должны будут работать в качестве одной группировки, помогая метеорологам строить более точные прогнозы насчет зарождения и траектории движения циклонов, ураганов и тайфунов в тропиках.
Дальнейшие пуски предстоят в период с будущей весны по 2020 год, отметил Коул. Со своей стороны новый глава научного директората NASA Томас Цурбухэн подчеркнул, что его ведомство "все больше использует небольшие спутники".
ЦитироватьGoogle продаст свой сервис спутниковой съемки
06.02.2017 15:05 Новости международных рынков (https://www.finam.ru/international/advanced/)
Корпорация Google, входящая в состав холдинга Alphabet, сообщила в пятницу, 3 февраля, о том, что намерена продать свой сервис спутниковой съемки Terra Bella фирме Planet Labs. Финансовые условия сделки не разглашаются.
Сообщается, что в рамках соглашения в собственность Planet Labs перейдет семь спутников SkySat, предназначенных для фотосъемки с высоким разрешением, а Google планирует в дальнейшем приобретать у Planet Labs снимки с высоким разрешением для своих продуктов и сервисов в соответствии с подписанным контрактом.
https://www.finam.ru/international/newsitem/google-prodast-svoiy-servis-sputnikovoiy-s-emki-20170206-15050/
Ну вот, начали жрать друг друга.
Цитировать (https://img.novosti-kosmonavtiki.ru/185473.jpg) DFJ Venture Capital @DFJvc (https://twitter.com/DFJvc) 6 ч.6 часов назад (https://twitter.com/DFJvc/status/828808048827363328)
Doves in Space: @DFJvc (https://twitter.com/DFJvc) @dfjsteve (https://twitter.com/dfjsteve) talks smallsats with @planetlabs (https://twitter.com/planetlabs) visionary @wsm1 (https://twitter.com/wsm1) https://youtu.be/vd47Yu0t8o4 (https://t.co/aMyYaKRKNl)
https://youtu.be/vd47Yu0t8o4 (https://youtu.be/vd47Yu0t8o4)
Цитироватьvogel пишет:
PLANET TO LAUNCH RECORD-BREAKING 88 SATELLITES (https://www.planet.com/pulse/record-breaking-88-satellites/)
ЦитироватьPlanet is pleased to announce that in February we are launching 88 satellites—the largest fleet of satellites launched in history. The Dove satellites (collectively known as "Flock 3p") will ride aboard a PSLV rocket from the Satish Dhawan Space Centre in Sriharikota, India. They're heading to a morning crossing time, Sun Synchronous Orbit (SSO) at an approximate altitude of 500 km. The launch date is currently set for February 14, Valentine's day.
Цитировать (https://pbs.twimg.com/profile_images/800794088660500480/haG05guK_bigger.jpg) nanosats.eu | Nanosatellite Database @nanosatellites (https://twitter.com/nanosatellites) 4 янв. (https://twitter.com/nanosatellites/status/948937671124094978)
2017 reached a new record of 295 launched nanosatellites including 287 CubeSats thanks to a great extent to @planetlabs (https://twitter.com/planetlabs) (140), @SpireGlobal (https://twitter.com/SpireGlobal) (46) and @QB50Mission (https://twitter.com/QB50Mission) (36). That is more than 2 previous years combined.
(https://img.novosti-kosmonavtiki.ru/172454.jpg)